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What is End-to-End 
ASR?



Conventional ASR Pipeline
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Conventional ASR Pipeline: AM Training
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Conventional ASR Pipeline: LM Training
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Conventional ASR Pipeline

● Most ASR systems involve separately trained acoustic, pronunciation and 
language model components which are trained separately

○ Discriminative Sequence Training of AMs does couple these components

● Curating pronunciation lexicon, defining phoneme sets for the particular 
language requires expert knowledge, and is time-consuming



What is “End-to-End” 
ASR?



“A system which 
directly maps a 

sequence of input 
acoustic features into 

a sequence of 
graphemes or words.”

“A system which is 
trained to optimize 

criteria that are related 
to the final evaluation 

metric that we are 
interested in (typically, 

word error rate).”



Motivation: End-to-End ASR

End2End Trained
Sequence-to-Sequence

Recognizer

Acoustic Model

Pronunciation 
Model

Verbalizer

Language
Model

2nd-Pass 
Rescoring

Typical Speech System

A single end-to-end trained sequence-to-sequence model, which directly outputs 
words or graphemes, could greatly simplify the speech recognition pipeline



Historical 
Development of 
End-to-End ASR



Connectionist Temporal Classification (CTC)
● CTC was proposed by [Graves et 

al., 2006] as a way to train an 
acoustic model without requiring 
frame-level alignments

● Early work, used CTC with 
phoneme output targets - not 
“end-to-end”

● CD-phoneme based CTC models 
achieve state-of-the art 
performance for conventional, 
word-level lagged behind ASR [Sak 
et al., 2015] 

[Graves et al., 2006] ICML



Connectionist Temporal Classification (CTC)

CTC allows for training an acoustic model without the need for frame-level 
alignments between the acoustics and the transcripts



Connectionist Temporal Classification (CTC)

Encoder: Multiple layers of Uni- or Bi-directional RNNs (often LSTMs)



Connectionist Temporal Classification (CTC)

B B c B B a a B B t
B c c B a B B B B t

...
B c B B a B B t t B 

CTC introduces a special symbol - blank (denoted by B) - and maximizes the total 
probability of the label sequence by marginalizing over all possible alignments



Connectionist Temporal Classification (CTC)

B B c B B a a B B t
B c c B a B B B B t

...
B c B B a B B t t B 

B c B a

In a conventional hybrid system, this would correspond to defining the 
HMMs corresponding to each unit to consist of a shared initial state 

(blank), followed by a separate state(s) for the actual unit



Connectionist Temporal Classification (CTC)

● Computing the gradients of the loss requires the computation of the alpha-beta 
variables using the forward-backward algorithm [Rabiner, 1989]
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CTC-Based End-to-End ASR

[Graves and Jaitly, 2014] ICML

● Graves and Jaitly proposed a 
system with character-based 
CTC which directly output word 
sequences given input speech

● Using an external LM was 
important for getting good 
performance. Results reported 
by rescoring a baseline system.

● Also proposed minimizing 
expected transcription error 
[WSJ: 8.7% → 8.2%] 



CTC-Based ASR: Refinements since [Graves & Jaitly, 2014]

● LM incorporated into first-pass decoding; easy integration with WFSTs
○ [Hannun et al., 2014] [Maas et al., 2015]: Direct first-pass decoding with an LM as opposed to 

rescoring as in [Graves & Jaitly, 2014]
○ [Miao et al., 2015]: EESEN framework for decoding with WFSTs, open source toolkit

● Large-scale GPU training; data augmentation; multiple languages
○ [Hannun et al., 2014; DeepSpeech] [Amodei et al., 2015; DeepSpeech2]: Large scale GPU training; 

Data Augmentation; Mandarin and English

● Using longer span units: words instead of characters
○ [Soltau et al., 2017]: Word-level CTC targets, trained on 125,000 hours of speech. Performance 

close to or better than a conventional system, even without using an LM!
○ [Audhkhasi et al., 2017]: Direct Acoustics-to-Word Models on Switchboard

● And many others ...



CTC-Based End-to-End ASR

CTC produces “spiky” and sparse activations - can sometimes directly read off the 
final transcription from the activations even without an LM

Reproduced from [Maas et al., 2015] NAACL



CTC-Based End-to-End ASR

Reproduced from [Maas et al., 2015] NAACL



CTC-Based End-to-End ASR

Reproduced from [Maas et al., 2015] NAACL



Shortcomings of CTC

● For efficiency, CTC makes an important independence assumption - network 
outputs at different frames are conditionally independent

● Obtaining good performance from CTC models requires the use of an external 
language model - direct greedy decoding does not perform very well



Recurrent Neural Network Transducer (RNN-T)

● Proposed by Graves et al., 
RNN-T augments a 
CTC-based model with a 
recurrent LM component

● Both components are 
trained jointly on the 
available acoustic data

● As with CTC, the method 
does not require aligned 
training data.

[Graves et al., 2013] ICASSP; 
[Graves, 2012] ICML Representation Learning Workshop



Recurrent Neural Network Transducer (RNN-T)

RNN-T [Graves, 2012] augments CTC encoder with a recurrent neural network LM



Recurrent Neural Network Transducer (RNN-T)

Encoder

t=0 frame

Prediction 
Network

<SOS>

Softmax over n + 1 labels, includes a 

blank like CTC.

<blank> → advance in Encoder, retain 

prediction network stateJoint 
Network

Softmax n+1

<blank>

Output:



Recurrent Neural Network Transducer (RNN-T)

Encoder

t=1 frame

Prediction 
Network

<SOS>

Joint 
Network

Softmax n+1

<blank>

Output:

Softmax over n + 1 labels, includes a 

blank like CTC.

<blank> → advance in Encoder, retain 

prediction network state



Recurrent Neural Network Transducer (RNN-T)

Encoder

t=2 frame

Prediction 
Network

<SOS>

Joint 
Network

Softmax n+1

g

Output: g

Softmax over n + 1 labels, includes a 

blank like CTC.

<blank> → advance in Encoder, retain 

prediction network state



Recurrent Neural Network Transducer (RNN-T)

Encoder

t=2 frame

Prediction 
Network

g

Joint 
Network

Softmax n+1

o

Output: go

Softmax over n + 1 labels, includes a 

blank like CTC.

<blank> → advance in Encoder, retain 

prediction network state



Recurrent Neural Network Transducer (RNN-T)

Encoder

t=2 frame

Prediction 
Network

o

Joint 
Network

Softmax n+1

o

Output: goo

Softmax over n + 1 labels, includes a 

blank like CTC.

<blank> → advance in Encoder, retain 

prediction network state



Recurrent Neural Network Transducer (RNN-T)

Encoder

t=T frame

Prediction
Network

e

Joint 
Network

Softmax n+1

<blank>

Output: google

Inference terminates when all input 

frames have been consumed



Recurrent Neural Network Transducer (RNN-T)

Encoder

t

Prediction 
Network

u

Joint 
Network

Softmax n+1

t, u During training feed the true label sequence to 
the LM.

Given a target sequence of length U and T 
acoustic frames we generate UxT softmax

1 2 3 4 5
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Recurrent Neural Network Transducer (RNN-T)

Reproduced from [Graves, 2012] ICML Representation Learning Workshop



Recurrent Neural Network Transducer (RNN-T)

[Graves et al., 2013] showed promising results on TIMIT phoneme recognition, but 
the work did not seem to get as much traction in the field as CTC.

Reproduced from [Graves, 2013] ICASSP



Recurrent Neural Network Transducer (RNN-T)

● Intuitively, the prediction network corresponds to the “language model” 
component and the encoder corresponds to the “acoustic model” component

○ Both components can be initialized from a separately trained CTC-AM and a RNN-LM (which can 
be trained on text only data) 

○ Initialization provides some gains [Rao et al., 2017] but is not critical to get good performance

● Generally speaking, RNN-T always seems to perform better than CTC alone in 
our experiments (even when decoded with a separate LM)

○ More on this in a bit when we compare various approaches on a voice search task.



RNN-T: Case Study on ~18,000 hour Google Data

RNN-T components can be initialized separately from (hierarchical) 
CTC-trained AM, and recurrent LM. Initialization generally improves 

performance. 

Reproduced from 
[Rao et al., 2017] ASRU



RNN-T: Case Study on ~18,000 hour Google Data

● If graphemes are used as output units, then the model has limited language 
modeling context: e.g. errors: “the tortoise and the hair”

● Using words as output targets would allow modeling additional context, but 
would introduce OOVs

● Intermediate: Use “word pieces” [Schuster & Nakajima, 2012]
○ Iteratively learn a vocabulary of units from text data.
○ Start with single graphemes, and train an LM from the data. 
○ Iteratively combine units in a greedy manner which improve training perplexity
○ Continue to combine units until reaching a predefined number of units or perplexity 

improvements are below a threshold
○ E.g., “tortoise and the hare” → _tor to ise _and _the _hare



RNN-T: Case Study on ~18,000 hour Google Data

Initializing the “encoder” (i.e., acoustic model) helps improve 
performance by ~5%.



RNN-T: Case Study on ~18,000 hour Google Data

Initializing the “prediction network” (i.e., prediction network) 
helps improve performance by ~5%.



RNN-T: Case Study on ~18,000 hour Google Data

The RNN-T model with ~96M parameters can match the performance of a 
conventional sequence-trained CD-phone based CTC model with a large first pass LM



Attention-based Encoder-Decoder Models

● Attention-based Encoder-Decoder 
Models emerged first in the 
context of neural machine 
translation.

● Were first applied to ASR by [Chan 
et al., 2015] [Chorowski et al., 
2015]

[Chan et al., 2015]

[Chorowski et al., 2015]



Attention-based Encoder-Decoder Models

● Encoder (analogous to AM):
○ Transforms input speech into higher-level representation 

● Attention (alignment model):
○ Identifies encoded frames that are relevant to producing 

current output

● Decoder (analogous to PM, LM):
○ Operates autoregressively by predicting each output 

token as a function of the previous predictions



Attention-Based Models

Reproduced from [Chan et al., 2015]



Attention-Based Models

Reproduced from [Chan et al., 2015]



Attention-Based Models
Attention module computes a 

similarity score between the decoder 
and each frame of the encoder 



Attention-Based Models
Dot-Product Attention [Chan et al., 2015]

Additive Attention [Chorowski et al., 2015] 



Attention-Based Models

Reproduced from [Chan et al., 2015]



Attention-based Models

Encoder

<sos> Decoder

Softmax

c

Attention

Encoder Output

Query Vector Attention 
Context

Attention Mechanism

Attention mechanism summarizes encoder 
features relevant to predict next label

Output: c

48

P(a|<sos>,x) = 0.01
P(b|<sos>,x) = 0.01
P(c|<sos>,x) = 0.92

...



Attention-based Models

Encoder

c Decoder

Softmax

c

Attention

Output: ca

49

P(a|c,<sos>,x) = 0.95
P(b|c,<sos>,x) = 0.01
P(c|c,<sos>,x) = 0.01

...

Labels from previous step are fed into 
decoder at the next step to predict



Attention-based Models

Encoder

a Decoder

Softmax

c

Attention

Output: cat

50

P(a|a,c,<sos>,x) = 0.01
P(b|a,c,<sos>,x) = 0.08

...
P(t|a,c,<sos>,x) = 0.89

...

Labels from previous step are fed into 
decoder at the next step to predict



Attention-based Models

Encoder

a Decoder

Softmax

c

Attention

Output: cat

51

P(a|t,a,c,<sos>,x) = 0.01
P(b|t,a,c,<sos>,x) = 0.01

...
P(<eos>|t,a,c,<sos>,x) = 0.96

...

Process terminates when the model predicts 
<eos> which denotes end of sentence.

Labels

Frames



Comparing Various 
Approaches: 
Case-Study on a 12,500 
hour Google Task



Comparing Various End-to-End Approaches

● Compare various 
sequence-to-sequence 
models head-to-head, 
trained on same data, to 
understand how these 
approaches compare to 
each other

● Evaluated on a large-scale 
12,500 hour Google Voice 
Search Task [Prabhavalkar et al., 2017]



Experimental Setup: Model Configuration

● Baseline
○ State-of-the-art CD-Phoneme model: 5x700 BLSTM; ~8000 CD-Phonemes
○ CTC-training followed by sMBR discriminative sequence training
○ Decoded with large 5-gram LM in first pass
○ Second pass rescoring with much larger 5-gram LM in second pass
○ Lexicon of millions of words of expert curated pronunciations

● Sequence-to-Sequence Models
○ Trained to output graphemes: [a-z], [0-9], <space>, and punctuation
○ Models are evaluated using beam search (Keep Top 15 Hyps at Each Step)
○ Models are not decoded or rescored with an external language model, or a pronunciation model



Experimental Setup: Data

● Training Set
○ ~15M Utterances (~12,500 hrs) of anonymized utterances from Google Voice Search Traffic
○ Multi-style Training: Artificially distorted using room simulator by adding noise samples extracted 

from YouTube videos and environmental recordings of daily events

● Evaluation Sets
○ Dictation: ~13K utterances (~124K words) open-ended dictation
○ VoiceSearch: ~12.9K utterances (~63K words) of voice-search queries



Results

Model
Clean

Dictation VoiceSearch

Baseline Uni. Context 
Dependent Phones (CDP) 6.4 9.9

Baseline BiDi. CDP 5.4 8.6

CTC-grapheme 39.4 53.4

Decoding CTC-grapheme models without an LM performs poorly



Results

Model
Clean

Dictation VoiceSearch

Baseline Uni. CDP 6.4 9.9

Baseline BiDi. CDP 5.4 8.6

CTC-grapheme 39.4 53.4

RNN-T 6.6 12.8

RNN-T which augments CTC with a neural LM significantly improves 
performance, and is close to the unidirectional baseline



Results

Model
Clean

Dictation VoiceSearch

Baseline Uni. CDP 6.4 9.9

Baseline BiDi. CDP 5.4 8.6

CTC-grapheme 39.4 53.4

RNN-T 6.6 12.8

Attention-based Model 6.6 11.7

Attention-based model performs the best, but cannot be used for streaming 
speech recognition



Comparison of End-to-End Approaches [Battenberg et al., 2017]

Similar conclusions were reported by [Battenberg et al., 2017] on Switchboard. 
RNN-T without an LM is consistently better than CTC with an LM.

DeepSpeechSwitchboard



Combining Approaches

● Various end-to-end approaches can be successfully combined to improve the 
overall system

● CTC and Attention-based models can be combined in a multi-task learning 
framework [Kim et al., 2017]

● RNN-T can be augmented with an attention module which can
○ condition the language model component on the acoustics [Prabhavalkar et al., 2017] or,
○ be used to bias the decoder towards particular items of interest [He et al., 2017]

● An attention model can be augmented with a secondary attention module which 
can bias towards an arbitrary number of phrases of interest [Pundak et al., 2018] 
(will be discussed in more detail in a few slides)



Turning Research 
Into Reality



Moving From Research To Reality

● In order to use an end-to-end model for real-world applications, we need
○ Performance that matches that of a conventional model

■ Including MWER Training
■ Including External Language Model
■ More details in [Chiu et al., 2018]

○ Model must incorporate contextual biasing to long-tail words

○ Model must be streaming

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/74a8df45b9583e193e6cf8e156dfba9b73c33a0c.pdf


MWER Training 
[Prabhavalkar et al., 2018]



MWER Training of LAS Models: Motivation
● Attention-based Sequence-to-Sequence models are typically trained by 

optimizing cross entropy loss (i.e., maximizing log-likelihood of the training 
data)

● Training criterion does not match metric of interest: Word Error Rate 
● Goal: Optimize a loss that minimizes or is correlated with minimizing word 

error rate



MWER Training of LAS Models: Motivation
● Proposal: Minimize Expected Word Error Rate (MWER)

○ In the context of conventional ASR system, for Neural Network Acoustic Models
■ State-level Minimum Bayes Risk (sMBR) [Kingsbury, 2009]
■ Word-level edit-based Minimum Bayes Risk (EMBR) [Shannon, 2017]

○ In the context of end-to-end models
■ Connectionist Temporal Classification (CTC) [Graves and Jaitly, 2014]
■ Recurrent Neural Aligner (RNA) [Sak et al., 2017]: Applies word-level EMBR to RNA
■ Machine Translation:

● REINFORCE [Ranzato et al., 2016]
● Beam Search Optimization [Wiseman and Rush, 2016]
● Actor-Critic [Bahdanau et al., 2017]



MWER Training of LAS Models

Minimizing expected WER directly is intractable since it involves a summation over 
all possible label sequences

Number of Word Errors 



MWER Training: 
Approximating expectation 
by sampling from the model



Approximation By Sampling [Shannon, 17]

Approximate expectation using samples. 



Approximation By Sampling [Shannon, 17]

Drawing samples is particularly easy for locally-normalized models such as LAS!

<sos>

P(a|<sos>,x) = 0.01
P(b|<sos>,x) = 0.01
P(c|<sos>,x) = 0.81
P(d|<sos>,x) = 0.02
P(e|<sos>,x) = 0.01
P(f|<sos>,x) = 0.08

.

.

.

Sample c

c



Approximation By Sampling [Shannon, 17]

c

P(a|c,<sos>,x) = 0.61
P(b|c,<sos>,x) = 0.02
P(c|c,<sos>,x) = 0.01
P(d|c,<sos>,x) = 0.00
P(e|c,<sos>,x) = 0.26
P(f|c,<sos>,x) = 0.00

.

.

.

Sample a

ca 

Drawing samples is particularly easy for locally-normalized models such as LAS!



Approximation By Sampling [Shannon, 17]

a

P(a|a,c,<sos>,x) = 0.01
P(b|a,c,<sos>,x) = 0.41
P(c|a,c,<sos>,x) = 0.01
P(d|a,c,<sos>,x) = 0.51
P(e|a,c,<sos>,x) = 0.00
P(f|a,c,<sos>,x) = 0.00

.

.

.

Sample b

cab 

Drawing samples is particularly easy for locally-normalized models such as LAS!



Approximation By Sampling [Shannon, 17]

y

P(a|y,...,c,<sos>,x) = 0.00
P(b|y,...,c,<sos>,x) = 0.00

.

.

.
P(<eos>|y,...,c,<sos>,x)=0.98 Sample <eos>

cabs in calgary <eos>

Drawing samples is particularly easy for locally-normalized models such as LAS!



Approximation By Sampling [Shannon, 17]

Gradient itself is an expectation, which can be approximated using samples!



Approximation By Sampling [Shannon, 17]

Increase the probability of sequences which have lower than 
average number of word errors!



Approximation By Sampling [Shannon, 17]

Interpolate with CE-loss to stabilize training.
 F-smoothing or H-criterion [Su et al., 2013]



Approximation By Sampling [Shannon, 17]

● Why doesn’t the sampling-based approximation “work”?
○ Mismatch between decoding process during training (sampling) and decoding criterion (beam 

search) which focuses heavily on top hypotheses at each step [Kim and Rush, 2016]
○ In [Shannon, 17], paths are sampled from the lattice which corresponds to the most likely 

hypotheses, not from the space of all word sequences



MWER Training: 
Approximating expectation 
using decoded N-Best List



Approximation using N-Best List [Stolcke+,97][Povey,03] 

Assume that probability distribution is concentrated on top-N hypotheses



Approximation using N-Best List [Stolcke+,97][Povey,03]



Approximation using N-Best List [Stolcke+,97][Povey,03] 

Impact of interpolating MWER loss with CE loss during training.



Results: WER on Voice-Search Test Set

81

Model Uni-Directional 
Encoder

Bi-Directional 
Encoder

Baseline 8.1 7.2

+MWER Training 7.5 (7.4%) 6.9 (4.2%)

Results after direct decoding (beam size=8)



Results: WER on Voice-Search Test Set

82

Model + Second-Pass 
Rescoring

Uni-Directional 
Encoder

Bi-Directional 
Encoder

Baseline 7.3 6.6

+MWER Training 6.7 (8.2%) 6.2 (6.1%)

Results after N-best rescoring with Second-pass LM

Model Uni-Directional 
Encoder

Bi-Directional 
Encoder

Baseline 8.1 7.2

+MWER Training 7.5 (7.4%) 6.9 (4.2%)



MWER: Additional Comments
● Since [Prabhavalkar et al., 2018] we have repeated the experiments with 

MWER training on a number of models including RNN-T [Graves et al., 2013] 
and other streaming attention-based models such as MoChA [Chiu and Raffel, 
2017] and the Neural Transducer [Jaitly et al., 2016]

● In all cases we have observed between 8% to 20% relative WER reduction
● Implementing MWER requires the ability to decode N-best hypotheses from 

the model which can be somewhat computationally expensive



Results: LAS Model on Librispeech (960 hour task)

Model Dev DevOther Test TestOther

CE Baseline 5.8 16.1 6.2 16.4

MWER 5.3 (-8.8%) 15.2 (-5.7%) 5.7 (-8.4%) 15.4 (-6.0%)

Librispeech models trained on full 960 hour training data, with 16K 
word piece targets. Models are evaluated without an LM.



Language Model



Motivation #1

Reference LAS model output

What language is built into 
electrical circuitry of a 
computer?

what language is built into 
electrical circuit tree of a 
computer

Leona Lewis believe vienna lewis believe

Suns-Timberwolves score sun's timberwolves score

Some Voice Search errors appear to be fixable with a good language model
trained on more text-only data.



Motivation #2

● The LAS model requires audio-text pairs: we have only 15M of these
● Our production LM is trained on billions of words of text-only data
● How can we look at incorporating a larger LM into our LAS model?
● More details can be found in [Kannan et al., 2018]

https://arxiv.org/abs/1712.01996


Shallow fusion

● Log-linear interpolation between language model and seq2seq model:

● Typically only performed at inference time
● Language model is trained ahead of time and fixed
● LM can be either n-gram (FST) or RNN.
● Analogous to 1st pass rescoring.
● [Chorowski and Jaitly, 2017].  [Kannan et al., 2018].

https://arxiv.org/abs/1612.02695
https://arxiv.org/abs/1712.01996


Shallow fusion



Baseline LAS Model

  LAS 
decoder

Encoded 
utterance

Top k partial hypotheses

is the birch khalifa
is the bert khalifa
is the bird's khalifa
is the burj khalifa
is the birdskaleafa
is the bird khalifa

Baseline LAS model relies on LM learned from train data



Baseline LAS Model

  LAS 
decoder

Encoded 
utterance

Top k partial hypotheses

is the birch khalifa
is the bert khalifa
is the bird's khalifa
is the burj khalifa
is the birdskaleafa
is the bird khalifa

Unseen or rare phrases 
may be assigned low 

probability.



Integration with FST LM in 1st pass
Compose production LM (G) with a 

speller (S) to create LM over 
graphemes or wordpieces

ProjInput(S o G)

  LAS 
decoder

Encoded 
utterance

Partial 
Hypotheses in 

beam

is the bi
is the be
is the bu

...

Partial 
Hypotheses in 

beam

is the bur
is the bir
is the bea

...

Interpolate model posteriors with LM-score at each step of next 
label prediction



Integration with FST LM in 1st pass

Final Beam Search 
Results

is the burj khalifa
is the bird khalifa
is the bird's khalifa
is the birch khalifa
is the bert khalifa
is the birdskaleafa

Compose production LM (G) with a 
speller (S) to create LM over 
graphemes or wordpieces

ProjInput(S o G)

Out of vocabulary 
word moves to bottom

Recognized proper noun 
moves to top of ranking

  LAS 
decoder

Encoded 
utterance



Results with FST LM

System Dev WER Test WER LM Size

Baseline LAS 9.2% 7.7% 0 GB

LAS + FST LM in 1st pass 8.8% 7.4% 2 GB

Decoding with FST 1st pass production LMs 
into LAS system provides small improvement



Examples of LM wins

Reference Top 1 without LM Top 1 with LM

Rare words achondroplasia  acondra placia achondroplasia

Proper nouns st. isaac jogues mass 
schedule 

st isaac jog's mass 
schedule

st isaac jogues mass 
schedule

what causes high latency 
on a wi-fi connection?

what causes highlight 
and sienna wi-fi 

connection

what causes high latency 
on a wi-fi connection

Decoding with LM can correct errors early in decoding.
In examples above, correct hypothesis does not appear in N-best without LM, so 

would not be possible to correct in second-pass with ProdLM.



Examples of LM losses

Reference Top 1 without LM Top 1 with LM

Out of vocab 
terms

urgent important unurgent 
unimportant

urgent important unurgent 
unimportant

urgent important un urgent 
unimportant

Websites
(specific type of 

OOV)

mathfunbook.com product 
of a power property 

mathfunbook.com product 
of a power property 

math funbook com product 
of a power property

Grammatically 
incorrect 
language

why you not listening to me 
tonight

why you not listening to me 
tonight

why are you not listening to 
me tonight

LAS model can actually output words it has never seen before.
Decoding with a language model removes this ability, costing about 0.2% absolute WER.



Alternative: integrate with RNN LM in 1st pass
Train an RNN LM on billions of text 

queries.  Can train directly at 
graphemes or wordpiece level.

RNN LM

  LAS 
decoder

Encoded 
utterance

Partial 
Hypotheses in 

beam

is the bi
is the be
is the bu

...

Partial 
Hypotheses in 

beam

is the bur
is the bir
is the bea

...

RNN LM can achieve lower perplexity than n-gram LM and                                
does not suffer from OOV problem.



Results with RNN-LM

System Dev WER Test WER LM Size

Baseline LAS 9.2% 7.7% 0 GB

LAS + FST LM in 1st pass 8.8% 7.4% 2 GB

LAS + RNN LM in 1st pass 8.4% 7.0% 1 GB

Decoding with RNN LM provides greater improvement at 
half the size!



Extending LAS with an LM

● Listen, Attend and Spell [Chan et al., 2015]
● How to incorporate an LM?

○ Shallow fusion [Kannan et al., 2018]
■ LM is applied on output 

○ Deep fusion [Gulcehre et al., 2015]
■ Assumes LM is fixed

○ Cold fusion [Sriram et al., 2017]
■ Simple interface between a deep lm and the 

encoder 
■ Allows to swap in task-specific LMs

● In these experiments, fusion is used during the beam 
search rather than n-best rescoring.

Shallow fusion

Deep/Cold fusion

LM

https://cs.corp.google.com/piper///depot/google3/experimental/users/anjuli/papers/icassp2018/lm/main.pdf
https://arxiv.org/pdf/1503.03535.pdf
https://arxiv.org/pdf/1708.06426.pdf


Comparison of Fusion Results

● Shallow Fusion still seems to perform the best
● Full comparison in [Toshniwal, 2018]

System Voice 
Search

Dictation

Baseline LAS 5.6 4.0

Shallow Fusion 5.3 3.7

Deep Fusion 5.5 4.1

Cold Fusion 5.3 3.9

https://arxiv.org/abs/1807.10857


Handling Long Tail with Biasing



What is “Biasing”?

“An attempt to adapt the priors 
baked into the speech models 
to better model information 
gained between training and 
inference (aka context).”



Why Is Biasing Important

● Biasing can improve WER in domains by more than 10% relative

Test Set WER, No Biasing WER, Biasing

Contacts 15.0 2.8

Numeric 11.0 4.7

Yes-No-Cancel 18.8 10.4

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43819.pdf


How To Bias E2E Models

● Two options for biasing
○ Bias externally
○ Biasing within the model

● Paper reference [Pundak et al., 2018]
● In these experiments, we will evaluate on the following test sets

○ Contacts - “call Joe Doe, send a message to Jason Dean”
○ Songs - “play Lady Gaga, play songs from Jason Mraz”
○ Third Party - “text Jeanne, text John”

https://arxiv.org/abs/1808.02480


(1) Biasing - Shallow Fusion

● General equation for shallow fusion during beam search

● Assumptions (for now)
● Biasing is done at test time only
● Tune interpolation weight ƛ per task

E2E Model Biasing FST



Biasing - Where to Apply Scores?

● Best to apply to every unit (E3)

Experiment Method (Grapheme) WER - 
Songs

E0 No Bias (LAS) 20.9

E1 LAS + End of Word Bias 19

E2 LAS + Beginning of Word Bias 16.5

E3 LAS + Every Subword Unit w/ 
Subtractive Cost Bias

13.4



Improving Biasing Further

● Biasing FST should be applied before pruning the beam candidates, not 
rescoring a pruned beam (E4)

● Biasing at the WPM level is more effective than grapheme (E5)

Experiment Method (Grapheme) WER - 
Songs

E0 No Bias (LAS) 20.9

E3 Grapheme Biasing 13.4

E4 Biasing Before Pruning 9.4

E5 4K Word Piece Model LAS Biasing 6.9



Prefixes & Suffixes
Prefix FST

Context FST

Suffix FST

Combined FST

● Since E2E model cannot predict 
$CONTACT, we prebuild 
individual FSTs into one.



Prefixes & Suffixes

● Using this makes a large difference for biasing

Experiment Method (Grapheme) WER - Songs

E0 No Bias (LAS) 20.9

E5 4K Word Piece Model LAS Biasing 6.9

E6 + Prefix and Suffix 5.6



Shallow Fusion Biasing Summary

● Biasing E2E Models similar quality to conventional model

Method CONTACTS Songs THIRD PARTY

Conventional Model No Biasing 36.1 26.5 -

Conventional Model Biasing 10.0 3.8 -

LAS No Biasing 26.9 16.8 10.5

LAS + Shallow Fusion, WPM 4K 7.1 5.6 3.9



(2) Biased LAS Model (CLAS)

● Fixed-length embedding of bias 
phrases

● Attention over the embeddings,  
producing a bias-dependent per-step 
context vector

● Attention also includes a N/A option - 
don’t apply bias

Decoder

Biaser

the grey chicken</bias> jumps 

B1 = grey chicken
B2 = blue dog

Encoder

SiSi



The Biaser

LSTM

D

LSTM

O

LSTM

G

h_1 

● The Biaser embeds each phrase into a fixed length vector
○ → Last state of an LSTM

● Embedding happens once per bias phrase (possibly offline)
○ Cheap computation

● Attention is then computed over the set of embeddings

h_2 h_3 

bi

N/A 



BLAS



Prior work: Keyword spotting with 
RNNT 

● “Streaming Small-Footprint Keyword Spotting using 

Sequence-to-Sequence Models” [He et al., 2017]

https://arxiv.org/pdf/1710.09617.pdf


CLAS training 

● Example ref:  The grey chicken jumps over the lazy dog
● Sample uniformly a bias phrase b, e.g. grey chicken 
● With drop-probability p (e.g. 0.5) drop the selected B and replace it with another bias 

phrase from the same batch
● Augment with additional N-1 more bias phrases from other references in the batch 

(distractors)
● Present the model the set of N (shuffled) bias phrases:

○ quick turtle
○ grey chicken
○ brave monkey

● If b was not dropped, insert a </bias> token to reference:
○ The grey chicken</bias> jumps over the lazy dog



Biasing Example



Key aspects of CLAS

● Biasing is viewed as a keyword detection task which relates to both audio and 
LM (cf. beam search biasing)

● CLAS embeds “long” var-length bias sequences into fixed-length vectors
● CLAS computes attention over a set of phrases
● The model can take any list of bias phrases in inference time (including OOVs)

○ In training the bias phrases list is randomized for each batch
○ The number and content of bias phrases can be changed from training to inference



Biasing Summary

● CLAS model performs similar to biasing of conventional model

Method CONTACTS Songs THIRD PARTY

Conventional Model No Biasing 36.1 26.5 -

Conventional Model Biasing 10.0 3.8 -

LAS No Biasing 26.9 16.8 10.5

CLAS + Shallow Fusion, 
Grapheme

7.5 5.7 5.6



Online Models



Streaming speech recognition

Recognize the audio

Finalize recognition &
Taking action / fetching the search results



Streaming speech recognition

Recognize the audio

Endpoint quickly

Finalize recognition &
Taking action / fetching the search results



Online Models

● LAS is not streaming
● We will show a thorough comparison of different online models

○ RNN-T [Graves, 2012], [Rao et al., 2017]
○ Neural Transducer [Jaitly et al., 2015], [Sainath et al., 2018]
○ MoChA [Chiu and Raffel, 2018]

https://arxiv.org/pdf/1211.3711.pdf
https://arxiv.org/abs/1801.00841
https://arxiv.org/abs/1511.04868
https://arxiv.org/abs/1712.01807
https://arxiv.org/abs/1712.05382


(1) Neural Transducer: “Online” Attention Models

Encoder

Chunk

Decoder <sos>

Attention Mechanism

c



(1) Neural Transducer: “Online” Attention Models

Encoder

Chunk

Decoder c

Attention Mechanism

a



(1) Neural Transducer: “Online” Attention Models

Encoder

Chunk

Decoder a

Attention Mechanism

t



(1) Neural Transducer: “Online” Attention Models

Encoder

Chunk

Decoder t

Attention Mechanism

<epsilon>



(1) Neural Transducer: “Online” Attention Models

Encoder

Chunk

Decoder <epsilon>

Attention Mechanism

i

Chunk



(1) Neural Transducer: “Online” Attention Models

Encoder

Chunk

Decoder i

Attention Mechanism

n

Chunk



Training Data for Neural Transducer

● Online methods like RNN-T, Policy Gradient learn alignment jointly with model
● We train neural transducer with a pre-specified alignment, so don’t need to 

re-compute alignments (e.g., forward-backward) during training, which slows 
things down on GPU

hello how are youWord 
Alignment



Training Data for Neural Transducer

● <epsilon> signals end-of-chunk
● Since we don’t have grapheme-level alignments, we wait till the end of the 

word to emit the entire word’s graphemes

hello how are youWord 
Alignment

<epsilon> how are <epsilon> you <epsilon>
hello <epsilon> <epsilon> <epsilon>



Neural Transducer Attention Plot

NT model examines previous frames without looking beyond the current chunk

Unidirectional LAS with
 Multi-Headed Attention

Neural Transducer Attention



(2) Monotonic Attention









MoChA





(2) Monotonic chunkwise attention (MoChA)

Soft attention Hard monotonic attention Monotonic chunkwise attention

[Chiu and Raffel, 2018]



Training monotonic chunkwise attention

● Compute expected probability of hard attention
● The expected probability distribution provides a soft attention
● Same training procedure as LAS

Train Inference



Online Model Comparison

Model

Clean

Voice 
Search Dictation

LAS 5.7 4.1

RNN-T 6.8 4.0

MoChA 5.8 4.2

NT 8.7 7.8

MoChA seems to be a promising online model. 



Endpointer



Why is Endpointing hard?
1. Latency vs WER tradeoff

LATENCY



Why is Endpointing hard?
1. Latency vs WER tradeoff

LATENCY

2. Noisy conditions
...



Confidential & Proprietary

VAD based endpointer
● Use forced alignment to find the timing of the utterance
● Based on the timing mark each frame as SPEECH (0) or NON-SPEECH (1)
● Made mic closing decision when a fixed amount of silence is detected

Driving time to San Francisco

1 1 1 1 10 0 0 0



Confidential & Proprietary

E2E endpointer
● An unified model does endpointing and ASR
● Add an <eos> symbol to the end of each target transcript.
● If top-1 hypothesis in the beam outputs a <eos> for a frame then close mic.

d  r  i  v  e  t  o  sil  s  a  n  f  r  a  n  c  i  s  c  o   <eos> 



Confidential & Proprietary

E2E endpointer
Parameters to precise control E2E endpointing:

● Cost penalty: scale up for <eos> cost
● Pruning: max cost of <eos> allowed in beam search

Similar to thresholds for EOU detector or VAD



Confidential & Proprietary

● Measure endpointer latency
○ Use forced alignment to find the time of the ‘sil’ that’s not followed by speech.
○ Compare that to the timestamp of the END_OF_UTTERANCE.

● Metrics:
○ median latency
○ 90th percentile latency
○ WER

Evaluating an Endpointer
latencyEOU

(force-align)



Confidential & Proprietary

Results summary
● VAD baseline: 900 ms median latency 
● VAD -> E2E endpointer: up to ~700 ms improvement!! 

WER Median latency 90th percentile 
latency

(1) CTC AM 14.5 890 960

(2) RNNT no EP 8.4 - -

(3) RNNT + VAD EP 8.8 900 1030

(4) E2E RNNT EP 8.8 210 1010



Extensions of E2E Models



Multi-Dialect Speech Recognition With 
A Single Seq2Seq Model 

[Li et al., 2018]
[Toshniwal et al., 2018]

https://arxiv.org/abs/1712.01541
https://arxiv.org/abs/1711.01694


Multi-Dialect ASR

Decoding Rescoring

AM PM LM

en
-u

s

AM PM LM

en
-g

b

…
In conventional systems, languages/dialects,

are handled with individual AMs, PMs and LMs.
Upscaling is becoming challenging. 

Decoding

Seq2Seq

A single model for all.

Decoding Rescoring

AM PM

LM

en
-u

s

LM

…

en
-g

b

Conventional Systems Conventional Co-training. Seq2Seq



Multi-Dialect LAS

● Modeling Simplicity
● Data Sharing 

○ among dialects and model components 

● Joint Optimization
● Infrastructure Simplification

○ a single model for all

Conventional Seq2Seq

data

data
phoneme
lexicon

text normalization
LM

⨉ N

Table: Resources required for building each system.



Motivations

● We share the same interest:
○ S. Watanabe, T. Hori, J.R. Hershey; Language independent end-to-end architecture for 

joint language identification and speech recognition; ASRU 2017. MERL, USA.
■ English, Japanese, Mandarin, German, Spanish, French, Italian, Dutch, Portuguese, 

Russian.
○ S. Kim, M.L. Seltzer; Towards language-universal end-to-end speech recognition; 

submitted to ICASSP 2018. Microsoft, USA.
■ English, German, Spanish.



Multi-Dialect LAS



Dialect as Output Targets

● Multi-Task Learning: Joint Language ID (LID) and ASR
○ LID first, then ASR

■ "<sos> <en-gb> h e l l o ப w o r l d <eos>"
■ LID errors may affect ASR performance 

○ ASR first, then LID
■ "<sos> h e l l o ப w o r l d <en-gb> <eos>"
■ ASR prediction is not dependent on LID prediction, not suffering from LID 

errors



Dialect as Input Features

● Passing the dialect information 
as additional features

LSTM

LSTM

LSTM

LSTM

LSTM

input

dialect

Encoder

LSTM

LSTM

A
tte

nt
io

n

<sos> h e l l o w o r l d <eos>

[previous context vector, 
 previous label prediction]

Decoder

components variations 

encoders → acoustic

decoders → lexicon and 
language



Dialect Information as Cluster Coefficients

● Cluster Adaptive Training (CAT) [1] 
coefficients
○ more flexible model 

architectures
○ larger capacity in variation 

modeling
○ but increased model 

parameters 
LSTM

LSTM

LSTM

LSTM

LSTM

input

dialect

Encoder

LSTM LSTM LSTM

LSTM LSTM LSTM

[1] Tian Tan, Yanmin Qian and Kai Yu, "Cluster adaptive training for deep neural network based acoustic model", IEEE/ACM TASLP, 2016



Experimental Evaluations



Task

★ unbalanced dialect data ★ unbalanced target classes

● 7 English dialects: US (America), IN (India), GB (Britain), ZA (South Africa), AU 
(Australia), NG (Nigeria & Ghana), KE (Kenya)



LAS Co-training Baselines

Dialect US IN GB ZA AU NG KE
dialect-ind. 10.6 18.3 12.9 12.7 12.8 33.4 19.2
dialect-dep. 9.7 16.2 12.7 11.0 12.1 33.4 19.0

★ dialect specific fine-tuning still wins

★ simply pooling the data is missing certain dialect specific variations



LAS With Dialect as Output Targets

Example target sequence  

LID first <sos> <en-gb> h e l l o ப w o r l d <eos>

ASR first <sos> h e l l o ப w o r l d <en-gb> <eos>

Dialect US IN GB ZA AU NG KE
Baseline 

(dialect-dep.) 9.7 16.2 12.7 11.0 12.1 33.4 19.0

LID first 9.9 16.6 12.3 11.6 12.2 33.6 18.7
ASR first 9.4 16.5 11.6 11.0 11.9 32.0 17.9

★ LID error affects ASR  
  
★ ASR first is better



LAS With Dialect as Input Features

Dialect US IN GB ZA AU NG KE
Baseline (dialect-dep.) 9.7 16.2 12.7 11.0 12.1 33.4 19.0

encoder
1-hot 9.6 16.4 11.8 10.6 10.7 31.6 18.1
emb. 9.6 16.7 12.0 10.6 10.8 32.5 18.5

decoder
1-hot 9.4 16.2 11.3 10.8 10.9 32.8 18.0
emb. 9.4 16.2 11.2 10.6 11.1 32.9 18.0

both 1-hot 9.1 15.7 11.5 10.0 10.1 31.3 17.4

★ dialect 1-hot and embedding (emb.) performs similarly

★ feeding dialect to both encoder and decoder gives the largest gains



LAS With Dialect as Input Features

★ encoder is more sensitive to wrong dialects → large acoustic variations

★ for low-resource dialects (NG, KE), the model learns to ignore the dialect information

Figure: Feeding different dialect vectors (rows) to the LAS 
encoder and decoder on different test sets (columns).



LAS With Dialect as Input Features

● The dialect vector does both AM and LM adaptation

★ dialect vector helps encoder to normalize accent variations

★ dialect vector helps decoder to learn dialect-specific lexicons

dialect vector encoder decoder
color 
(US)

colour 
(GB) 

❌ ❌ ❌ 1 22

<en-gb>: [0, 1, 0, 0, 0, 0, 0] ✓ ❌ 19 4

<en-gb>: [0, 1, 0, 0, 0, 0, 0] ❌ ✓ 0 25

<en-us>: [1, 0, 0, 0, 0, 0, 0] ❌ ✓ 24 0

Table: The number of color/colour occurrences in hypotheses on the en-gb test data.



LAS With Dialect as CAT coefficients 

Dialect US IN GB ZA AU NG KE
Baseline (dialect-dep.) 9.7 16.2 12.7 11.0 12.1 33.4 19.0

input features 
(encoder) 1-hot 9.6 16.4 11.8 10.6 10.7 31.6 18.1

CAT coeff.
1-hot 9.9 17.0 12.1 11.0 11.6 32.5 18.3
emb. 9.4 16.1 11.7 10.6 10.6 32.9 18.1

★ dialect as CAT coefficients is much better than as inputs

★ but with large model params increase (160K vs. 3M)



Final Multi-Dialect LAS



Final Multi-Dialect LAS 

○ output targets:
■ multi-task with ASR 

first
○ input features: 

■ feeding dialect to 
both encoder and 
decoder

LSTM

LSTM

LSTM

LSTM

LSTM

input

dialect

Encoder

LSTM

LSTM

A
tte

nt
io

n

<sos> h e l l o w o r l d <en-gb> <eos>

[previous context vector, 
 previous label prediction]

Decoder



Final Multi-Dialect LAS 

Dialect US IN GB ZA AU NG KE
Baseline 

(dialect-dep.) 9.7 16.2 12.7 11.0 12.1 33.4 19.0

output targets 
(ASR first) 9.4 16.5 11.6 11.0 11.9 32.0 17.9

input features 
(both) 9.1 15.7 11.5 10.0 10.1 31.3 17.4

final 9.1 16.0 11.4 9.9 10.3 31.4 17.5

★ small gains when combining input and output

★ the final system outperforms the dialect-dependent models by 3.1~16.5% relatively



IndicX - Task

● 9 Indian languages: bn_bd, gu_in, hi_in, ur_pk, mr_in, kn_in, ml_in, ta_in, te_in
● large script variations

[1] S. Toshniwal, T.N. Sainath, R.J. Weiss, B. Li et.al Multilingual speech recognition with a single end-to-end model, ICASSP 2018

○ Bengali (bn_bd) - আমার বাবা ওেদরেক বলেতন
○ Gujarati (gu_in) - Ɇુ ંઘરની Ӕદર ન મȿંુ અને બહાર પણ ન મȿંુ
○ Hindi (hi_in) - पहले वीͫडयोĒाफȧ होगी
○ Kannada (kn_in) - ಮುಖದ ಮಧŜದĹş īಷō
○ Malayalam (ml_in) - എŋിčും അവരുെട വാÏുകളിലൂെട അവെര 
○ Marathi (mr_in) - ĮीकृçणाÍया गोकुळातãया
○ Tamil (ta_in) - இ¢ ஒ¯ நகராyசியா��
○ Telugu (te_in) - ఈ ĳÐǮǵ 'తర Ȩమ�' Ĩేయకమ�ందు ఇȇĥ�లĐ ĳ¿డİ�మ�
○ Urdu (ur_pk) - شیخ عبدالرحیم گرھوڑی جو کلام مصنف

https://cs.corp.google.com/piper///depot/google3/experimental/users/tsainath/papers/icassp2018/ronw-multilingual-las/indic_seq2seq.pdf


IndicX - Task

★ large variations in graphemes
★ totally 964 unique graphemes 

★ lexicon variations ★ LM variations

[1] S. Toshniwal, T.N. Sainath, R.J. Weiss, B. Li et.al Multilingual speech recognition with a single end-to-end model, ICASSP 2018

https://cs.corp.google.com/piper///depot/google3/experimental/users/tsainath/papers/icassp2018/ronw-multilingual-las/indic_seq2seq.pdf


IndicX - Co-training

[1] S. Toshniwal, T.N. Sainath, R.J. Weiss, B. Li et.al Multilingual speech recognition with a single end-to-end model, ICASSP 2018

★ co-trained model is consistently better ★ co-trained model chooses the right script

★ tested multitask learning (LID and ASR), not helpful
★ the model cannot do code switching, faithful to one language 

https://cs.corp.google.com/piper///depot/google3/experimental/users/tsainath/papers/icassp2018/ronw-multilingual-las/indic_seq2seq.pdf


IndicX - Co-training with LID

[1] S. Toshniwal, T.N. Sainath, R.J. Weiss, B. Li et.al Multilingual speech recognition with a single end-to-end model, ICASSP 2018

★ helps more on encoder ★ chooses the correct script
★ faithful to language ID, 
      wrong ID leads to wrong script

★ feeds to encoder only is sufficient

https://cs.corp.google.com/piper///depot/google3/experimental/users/tsainath/papers/icassp2018/ronw-multilingual-las/indic_seq2seq.pdf


Summary and Open questions

● Summary
○ End-to-end models can be competitive to production
○ We now have models which can endpoint, are streaming, can do contextual biasing

● Open Questions
○ How to inject pronunciations?
○ How to handle long-tail problems (numerics)?

● Expanding to new domains
○ Speech To Parse
○ Audio-visual

173
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