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Abstract

We show that an end-to-end deep learning approach can be used to recognize
either English or Mandarin Chinese speech—two vastly different languages. Be-
cause it replaces entire pipelines of hand-engineered components with neural net-
works, end-to-end learning allows us to handle a diverse variety of speech includ-
ing noisy environments, accents and different languages. Key to our approach is
our application of HPC techniques, resulting in a 7x speedup over our previous
system [26]. Because of this efficiency, experiments that previously took weeks
now run in days. This enables us to iterate more quickly to identify superior ar-
chitectures and algorithms. As a result, in several cases, our system is competitive
with the transcription of human workers when benchmarked on standard datasets.
Finally, using a technique called Batch Dispatch with GPUs in the data center, we
show that our system can be inexpensively deployed in an online setting, deliver-
ing low latency when serving users at scale.

1 Introduction

Decades worth of hand-engineered domain knowledge has gone into current state-of-the-art auto-
matic speech recognition (ASR) pipelines. A simple but powerful alternative solution is to train such
ASR models end-to-end, using deep learning to replace most modules with a single model [26]. We
present the second generation of our speech system that exemplifies the major advantages of end-
to-end learning. The Deep Speech 2 ASR pipeline approaches or exceeds the accuracy of Amazon
Mechanical Turk human workers on several benchmarks, works in multiple languages with little
modification, and is deployable in a production setting. It thus represents a significant step towards
a single ASR system that addresses the entire range of speech recognition contexts handled by hu-
mans. Since our system is built on end-to-end deep learning, we can employ a spectrum of deep
learning techniques: capturing large training sets, training larger models with high performance
computing, and methodically exploring the space of neural network architectures. We show that
through these techniques we are able to reduce error rates of our previous end-to-end system [26] in
English by up to 43%, and can also recognize Mandarin speech with high accuracy.

One of the challenges of speech recognition is the wide range of variability in speech and acoustics.
As a result, modern ASR pipelines are made up of numerous components including complex feature
extraction, acoustic models, language and pronunciation models, speaker adaptation, etc. Build-
ing and tuning these individual components makes developing a new speech recognizer very hard,
especially for a new language. Indeed, many parts do not generalize well across environments or
languages and it is often necessary to support multiple application-specific systems in order to pro-
vide acceptable accuracy. This state of affairs is different from human speech recognition: people

∗Authorship order is alphabetical.

1

ar
X

iv
:1

51
2.

02
59

5v
1 

 [
cs

.C
L

] 
 8

 D
ec

 2
01

5



have the innate ability to learn any language during childhood, using general skills to learn language.
After learning to read and write, most humans can transcribe speech with robustness to variation in
environment, speaker accent and noise, without additional training for the transcription task. To
meet the expectations of speech recognition users, we believe that a single engine must learn to be
similarly competent; able to handle most applications with only minor modifications and able to
learn new languages from scratch without dramatic changes. Our end-to-end system puts this goal
within reach, allowing us to approach or exceed the performance of human workers on several tests
in two very different languages: Mandarin and English.

Since Deep Speech 2 (DS2) is an end-to-end deep learning system, we can achieve performance
gains by focusing on three crucial components: the model architecture, large labeled training
datasets, and computational scale. This approach has also yielded great advances in other appli-
cation areas such as computer vision and natural language. This paper details our contribution to
these three areas for speech recognition, including an extensive investigation of model architectures
and the effect of data and model size on recognition performance. In particular, we describe numer-
ous experiments with neural networks trained with the Connectionist Temporal Classification (CTC)
loss function [22] to predict speech transcriptions from audio. We consider networks composed of
many layers of recurrent connections, convolutional filters, and nonlinearities, as well as the impact
of a specific instance of Batch Normalization [63] (BatchNorm) applied to RNNs. We not only
find networks that produce much better predictions than those in previous work [26], but also find
instances of recurrent models that can be deployed in a production setting with no significant loss in
accuracy.

Beyond the search for better model architecture, deep learning systems benefit greatly from large
quantities of training data. We detail our data capturing pipeline that has enabled us to create larger
datasets than what is typically used to train speech recognition systems. Our English speech system
is trained on 11,940 hours of speech, while the Mandarin system is trained on 9,400 hours. We use
data synthesis to further augment the data during training.

Training on large quantities of data usually requires the use of larger models. Indeed, our models
have many more parameters than those used in our previous system. Training a single model at
these scales requires tens of exaFLOPs1 that would require 3-6 weeks to execute on a single GPU.
This makes model exploration a very time consuming exercise, so we have built a highly optimized
training system that uses 8 or 16 GPUs to train one model. In contrast to previous large-scale training
approaches that use parameter servers and asynchronous updates [18, 10], we use synchronous SGD,
which is easier to debug while testing new ideas, and also converges faster for the same degree of
data parallelism. To make the entire system efficient, we describe optimizations for a single GPU
as well as improvements to scalability for multiple GPUs. We employ optimization techniques
typically found in High Performance Computing to improve scalability. These optimizations include
a fast implementation of the CTC loss function on the GPU, and a custom memory allocator. We
also use carefully integrated compute nodes and a custom implementation of all-reduce to accelerate
inter-GPU communication. Overall the system sustains approximately 50 teraFLOP/second when
training on 16 GPUs. This amounts to 3 teraFLOP/second per GPU which is about 50% of peak
theoretical performance. This scalability and efficiency cuts training times down to 3 to 5 days,
allowing us to iterate more quickly on our models and datasets.

We benchmark our system on several publicly available test sets and compare the results to our
previous end-to-end system [26]. Our goal is to eventually reach human-level performance not only
on specific benchmarks, where it is possible to improve through dataset-specific tuning, but on a
range of benchmarks that reflects a diverse set of scenarios. To that end, we have also measured
the performance of human workers on each benchmark for comparison. We find that our system
outperforms humans in some commonly-studied benchmarks and has significantly closed the gap in
much harder cases. In addition to public benchmarks, we show the performance of our Mandarin
system on internal datasets that reflect real-world product scenarios.

Deep learning systems can be challenging to deploy at scale. Large neural networks are compu-
tationally expensive to evaluate for each user utterance, and some network architectures are more
easily deployed than others. Through model exploration, we find high-accuracy, deployable net-
work architectures, which we detail here. We also employ a batching scheme suitable for GPU

11 exaFLOP = 1018 FLoating-point OPerations.
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hardware called Batch Dispatch that leads to an efficient, real-time implementation of our Mandarin
engine on production servers. Our implementation achieves a 98th percentile compute latency of 67
milliseconds, while the server is loaded with 10 simultaneous audio streams.

The remainder of the paper is as follows. We begin with a review of related work in deep learning,
end-to-end speech recognition, and scalability in Section 2. Section 3 describes the architectural and
algorithmic improvements to the model and Section 4 explains how to efficiently compute them. We
discuss the training data and steps taken to further augment the training set in Section 5. An analysis
of results for the DS2 system in English and Mandarin is presented in Section 6. We end with a
description of the steps needed to deploy DS2 to real users in Section 7.

2 Related Work

This work is inspired by previous work in both deep learning and speech recognition. Feed-forward
neural network acoustic models were explored more than 20 years ago [7, 50, 19]. Recurrent neu-
ral networks and networks with convolution were also used in speech recognition around the same
time [51, 67]. More recently DNNs have become a fixture in the ASR pipeline with almost all
state of the art speech work containing some form of deep neural network [42, 29, 17, 16, 43, 58].
Convolutional networks have also been found beneficial for acoustic models [1, 53]. Recurrent
neural networks, typically LSTMs, are just beginning to be deployed in state-of-the art recogniz-
ers [24, 25, 55] and work well together with convolutional layers for the feature extraction [52].
Models with both bidirectional [24] and unidirectional recurrence have been explored as well.

End-to-end speech recognition is an active area of research, showing compelling results when used
to re-score the outputs of a DNN-HMM [23] and standalone [26]. Two methods are currently used to
map variable length audio sequences directly to variable length transcriptions. The RNN encoder-
decoder paradigm uses an encoder RNN to map the input to a fixed length vector and a decoder
network to expand the fixed length vector into a sequence of output predictions [11, 62]. Adding an
attentional mechanism to the decoder greatly improves performance of the system, particularly with
long inputs or outputs [2]. In speech, the RNN encoder-decoder with attention performs well both
in predicting phonemes [12] or graphemes [3, 8].

The other commonly used technique for mapping variable length audio input to variable length
output is the CTC loss function [22] coupled with an RNN to model temporal information. The CTC-
RNN model performs well in end-to-end speech recognition with grapheme outputs [23, 27, 26, 40].
The CTC-RNN model has also been shown to work well in predicting phonemes [41, 54], though
a lexicon is still needed in this case. Furthermore it has been necessary to pre-train the CTC-RNN
network with a DNN cross-entropy network that is fed frame-wise alignments from a GMM-HMM
system [54]. In contrast, we train the CTC-RNN networks from scratch without the need of frame-
wise alignments for pre-training.

Exploiting scale in deep learning has been central to the success of the field thus far [36, 38]. Train-
ing on a single GPU resulted in substantial performance gains [49], which were subsequently scaled
linearly to two [36] or more GPUs [15]. We take advantage of work in increasing individual GPU
efficiency for low-level deep learning primitives [9]. We build on the past work in using model-
parallelism [15], data-parallelism [18] or a combination of the two [64, 26] to create a fast and
highly scalable system for training deep RNNs in speech recognition.

Data has also been central to the success of end-to-end speech recognition, with over 7000 hours
of labeled speech used in Deep Speech 1 (DS1) [26]. Data augmentation has been highly effective
in improving the performance of deep learning in computer vision [39, 56, 14]. This has also been
shown to improve speech systems [21, 26]. Techniques used for data augmentation in speech range
from simple noise addition [26] to complex perturbations such as simulating changes to the vocal
tract length and rate of speech of the speaker [31, 35].

Existing speech systems can also be used to bootstrap new data collection. In one approach, the
authors use one speech engine to align and filter a thousand hours of read speech [46]. In another
approach, a heavy-weight offline speech recognizer is used to generate transcriptions for tens of
thousands of hours of speech [33]. This is then passed through a filter and used to re-train the recog-
nizer, resulting in significant performance gains. We draw inspiration from these past approaches in
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bootstrapping larger datasets and data augmentation to increase the effective amount of labeled data
for our system.

3 Model Architecture

A simple multi-layer model with a single recurrent layer cannot exploit thousands of hours of la-
belled speech. In order to learn from datasets this large, we increase the model capacity via depth.
We explore architectures with up to 11 layers including many bidirectional recurrent layers and con-
volutional layers. These models have nearly 8 times the amount of computation per data example as
the models in Deep Speech 1 making fast optimization and computation critical. In order to optimize
these models successfully, we use Batch Normalization for RNNs and a novel optimization curricu-
lum we call SortaGrad. We also exploit long strides between RNN inputs to reduce computation
per example by a factor of 3. This is helpful for both training and evaluation, though requires some
modifications in order to work well with CTC. Finally, though many of our research results make
use of bidirectional recurrent layers, we find that excellent models exist using only unidirectional
recurrent layers—a feature that makes such models much easier to deploy. Taken together these
features allow us to tractably optimize deep RNNs and improve performance by more than 40% in
both English and Mandarin error rates over the smaller baseline models.

3.1 Preliminaries

Figure 1 shows the architecture of the DS2 system which at its core is similar to the previous DS1
system [26]: a recurrent neural network (RNN) trained to ingest speech spectrograms and generate
text transcriptions.

Let a single utterance x(i) and label y(i) be sampled from a training set X =
{(x(1), y(1)), (x(2), y(2)), . . .}. Each utterance, x(i), is a time-series of length T (i) where every
time-slice is a vector of audio features, x(i)t , t = 0, . . . ,T (i) − 1. We use a spectrogram of power
normalized audio clips as the features to the system, so x(i)t,p denotes the power of the p’th frequency
bin in the audio frame at time t. The goal of the RNN is to convert an input sequence x(i) into a
final transcription y(i). For notational convenience, we drop the superscripts and use x to denote a
chosen utterance and y the corresponding label.

The outputs of the network are the graphemes of each language. At each output time-step t, the RNN
makes a prediction over characters, p(`t|x), where `t is either a character in the alphabet or the blank
symbol. In English we have `t ∈ {a, b, c, . . . , z, space, apostrophe, blank}, where we have added
the apostrophe as well as a space symbol to denote word boundaries. For the Mandarin system the
network outputs simplified Chinese characters. We describe this in more detail in Section 3.9.

The RNN model is composed of several layers of hidden units. The architectures we experiment
with consist of one or more convolutional layers, followed by one or more recurrent layers, followed
by one or more fully connected layers.

The hidden representation at layer l is given by hl with the convention that h0 represents the input
x. The bottom of the network is one or more convolutions over the time dimension of the input. For
a context window of size c, the i-th activation at time-step t of the convolutional layer is given by

hlt,i = f(wli ◦ hl−1t−c:t+c) (1)

where ◦ denotes the element-wise product between the i-th filter and the context window of the
previous layers activations, and f denotes a unary nonlinear function. We use the clipped rectified-
linear (ReLU) function σ(x) = min{max{x, 0}, 20} as our nonlinearity. In some layers, usually
the first, we sub-sample by striding the convolution by s frames. The goal is to shorten the number
of time-steps for the recurrent layers above.

Following the convolutional layers are one or more bidirectional recurrent layers [57]. The forward
in time

−→
h l and backward in time

←−
h l recurrent layer activations are computed as
−→
h lt = g(hl−1t ,

−→
h lt−1)

←−
h lt = g(hl−1t ,

←−
h lt+1)

(2)
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Figure 1: Architecture of the DS2 system used to train on both English and Mandarin speech. We explore
variants of this architecture by varying the number of convolutional layers from 1 to 3 and the number of
recurrent or GRU layers from 1 to 7.

The two sets of activations are summed to form the output activations for the layer hl =
−→
h l +

←−
h l.

The function g(·) can be the standard recurrent operation

−→
h lt = f(W lhl−1t +

−→
U l−→h lt−1 + bl) (3)

where W l is the input-hidden weight matrix,
−→
U l is the recurrent weight matrix and bl is a bias term.

In this case the input-hidden weights are shared for both directions of the recurrence. The function
g(·) can also represent more complex recurrence operations such as the Long Short-Term Memory
(LSTM) units [30] and the gated recurrent units (GRU) [11].

After the bidirectional recurrent layers we apply one or more fully connected layers with

hlt = f(W lhl−1t + bl) (4)

The output layer L is a softmax computing a probability distribution over characters given by

p(`t = k|x) = exp(wLk · hL−1t )∑
j exp(w

L
j · hL−1t )

(5)

The model is trained using the CTC loss function [22]. Given an input-output pair (x, y) and the
current parameters of the network θ, we compute the loss function L(x, y; θ) and its derivative with
respect to the parameters of the network ∇θL(x, y; θ). This derivative is then used to update the
network parameters through the backpropagation through time algorithm.

In the following subsections we describe the architectural and algorithmic improvements made rel-
ative to DS1 [26]. Unless otherwise stated these improvements are language agnostic. We report
results on an English speaker held out development set which is an internal dataset containing 2048
utterances of primarily read speech. All models are trained on datasets described in Section 5.
We report Word Error Rate (WER) for the English system and Character Error Rate (CER) for the
Mandarin system. In both cases we integrate a language model in a beam search decoding step as
described in Section 3.8.
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Architecture Hidden Units Train Dev

Baseline BatchNorm Baseline BatchNorm

1 RNN, 5 total 2400 10.55 11.99 13.55 14.40
3 RNN, 5 total 1880 9.55 8.29 11.61 10.56
5 RNN, 7 total 1510 8.59 7.61 10.77 9.78
7 RNN, 9 total 1280 8.76 7.68 10.83 9.52

Table 1: Comparison of WER on a training and development set for various depths of RNN, with and without
BatchNorm. The number of parameters is kept constant as the depth increases, thus the number of hidden units
per layer decreases. All networks have 38 million parameters. The architecture “M RNN, N total” implies 1
layer of 1D convolution at the input, M consecutive bidirectional RNN layers, and the rest as fully-connected
layers with N total layers in the network.

3.2 Batch Normalization for Deep RNNs

To efficiently scale our model as we scale the training set, we increase the depth of the networks by
adding more hidden layers, rather than making each layer larger. Previous work has examined doing
so by increasing the number of consecutive bidirectional recurrent layers [24]. We explore Batch
Normalization (BatchNorm) as a technique to accelerate training for such networks [63] since they
often suffer from optimization issues.

Recent research has shown that BatchNorm improves the speed of convergence of recurrent nets,
without showing any improvement in generalization performance [37]. In contrast, we demonstrate
that when applied to very deep networks of simple RNNs on large data sets, batch normalization
substantially improves final generalization error while greatly accelerating training.

In a typical feed-forward layer containing an affine transformation followed by a non-linearity f(·),
we insert a BatchNorm transformation by applying f(B(Wh)) instead of f(Wh+ b), where

B(x) = γ
x− E[x]

(Var[x] + ε)
1/2

+ β. (6)

The terms E and Var are the empirical mean and variance over a minibatch. The bias b of the
layer is dropped since its effect is cancelled by mean removal. The learnable parameters γ and β
allow the layer to scale and shift each hidden unit as desired. The constant ε is small and positive,
and is included only for numerical stability. In our convolutional layers the mean and variance
are estimated over all the temporal output units for a given convolutional filter on a minibatch.
The BatchNorm transformation reduces internal covariate shift by insulating a given layer from
potentially uninteresting changes in the mean and variance of the layer’s input.

We consider two methods of extending BatchNorm to bidirectional RNNs [37]. A natural extension
is to insert a BatchNorm transformation immediately before every non-linearity. Equation 3 then
becomes −→

h lt = f(B(W lhl−1t +
−→
U l−→h lt−1)). (7)

In this case the mean and variance statistics are accumulated over a single time-step of the minibatch.
The sequential dependence between time-steps prevents averaging over all time-steps. We find that
this technique does not lead to improvements in optimization. We also tried accumulating an average
over successive time-steps, so later time-steps are normalized over all present and previous time-
steps. This also proved ineffective and greatly complicated backpropagation.

We find that sequence-wise normalization [37] overcomes these issues. The recurrent computation
is given by −→

h lt = f(B(W lhl−1t ) +
−→
U l−→h lt−1). (8)

For each hidden unit, we compute the mean and variance statistics over all items in the minibatch
over the length of the sequence. Figure 2 shows that deep networks converge faster with sequence-
wise normalization. Table 1 shows that the performance improvement from sequence-wise normal-
ization increases with the depth of the network, with a 12% performance difference for the deepest
network. When comparing depth, in order to control for model size we hold constant the total
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Figure 2: Training curves of two models trained with and without BatchNorm. We start the plot after the first
epoch of training as the curve is more difficult to interpret due to the SortaGrad curriculum method mentioned
in Section 3.3

Train Dev

Baseline BatchNorm Baseline BatchNorm

Not Sorted 10.71 8.04 11.96 9.78
Sorted 8.76 7.68 10.83 9.52

Table 2: Comparison of WER on a training and development set with and without SortaGrad, and with and
without batch normalization.

number of parameters and still see strong performance gains. We would expect to see even larger
improvements from depth if we held constant the number of activations per layer and added lay-
ers. We also find that BatchNorm harms generalization error for the shallowest network just as it
converges slower for shallower networks.

The BatchNorm approach works well in training, but is difficult to implement for a deployed ASR
system, since it is often necessary to evaluate a single utterance in deployment rather than a batch.
We find that normalizing each neuron to its mean and variance over just the sequence degrades
performance. Instead, we store a running average of the mean and variance for the neuron collected
during training, and use these for evaluation in deployment [63]. Using this technique, we can
evaluate a single utterance at a time with better results than evaluating with a large batch.

3.3 SortaGrad

Training on examples of varying length pose some algorithmic challenges. One possible solution is
truncating backpropagation through time [68], so that all examples have the same sequence length
during training [52]. However, this can inhibit the ability to learn longer term dependencies. Other
works have found that presenting examples in order of difficulty can accelerate online learning [6,
70]. A common theme in many sequence learning problems including machine translation and
speech recognition is that longer examples tend to be more challenging [11].

The CTC cost function that we use implicitly depends on the length of the utterance,

L(x, y; θ) = − log
∑

`∈Align(x,y)

T∏
t

pctc(`t|x; θ). (9)

where Align(x, y) is the set of all possible alignments of the characters of the transcription y to
frames of input x under the CTC operator. In equation 9, the inner term is a product over time-steps
of the sequence, which shrinks with the length of the sequence since pctc(`t|x; θ) < 1. This moti-
vates a curriculum learning strategy we title SortaGrad. SortaGrad uses the length of the utterance
as a heuristic for difficulty, since long utterances have higher cost than short utterances.
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Architecture Simple RNN GRU

5 layers, 1 Recurrent 14.40 10.53
5 layers, 3 Recurrent 10.56 8.00
7 layers, 5 Recurrent 9.78 7.79
9 layers, 7 Recurrent 9.52 8.19

Table 3: Comparison of development set WER for networks with either simple RNN or GRU, for various
depths. All models have batch normalization, one layer of 1D-invariant convolution, and approximately 38
million parameters.

In the first training epoch, we iterate through the training set in increasing order of the length of
the longest utterance in the minibatch. After the first epoch, training reverts back to a random order
over minibatches. Table 2 shows a comparison of training cost with and without SortaGrad on the
9 layer model with 7 recurrent layers. This effect is particularly pronounced for networks without
BatchNorm, since they are numerically less stable. In some sense the two techniques substitute for
one another, though we still find gains when applying SortaGrad and BatchNorm together. Even
with BatchNorm we find that this curriculum improves numerical stability and sensitivity to small
changes in training. Numerical instability can arise from different transcendental function imple-
mentations in the CPU and the GPU, especially when computing the CTC cost. This curriculum
gives comparable results for both implementations.

We suspect that these benefits occur primarily because long utterances tend to have larger gradients,
yet we use a fixed learning rate independent of utterance length. Furthermore, longer utterances are
more likely to cause the internal state of the RNNs to explode at an early stage in training.

3.4 Comparison of simple RNNs and GRUs

The models we have shown so far are simple RNNs that have bidirectional recurrent layers with the
recurrence for both the forward in time and backward in time directions modeled by Equation 3.
Current research in speech and language processing has shown that having a more complex re-
currence can allow the network to remember state over more time-steps while making them more
computationally expensive to train [52, 8, 62, 2]. Two commonly used recurrent architectures are the
Long Short-Term Memory (LSTM) units [30] and the Gated Recurrent Units (GRU) [11], though
many other variations exist. A recent comprehensive study of thousands of variations of LSTM and
GRU architectures showed that a GRU is comparable to an LSTM with a properly initialized forget
gate bias, and their best variants are competitive with each other [32]. We decided to examine GRUs
because experiments on smaller data sets showed the GRU and LSTM reach similar accuracy for
the same number of parameters, but the GRUs were faster to train and less likely to diverge.

The GRUs we use are computed by

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

h̃t = f(Whxt + rt ◦ Uhht−1 + bh)

ht = (1− zt)ht−1 + zth̃t

(10)

where σ(·) is the sigmoid function, z and r represent the update and reset gates respectively, and
we drop the layer superscripts for simplicity. We differ slightly from the standard GRU in that we
multiply the hidden state ht−1 by Uh prior to scaling by the reset gate. This allows for all operations
on ht−1 to be computed in a single matrix multiplication. The output nonlinearity f(·) is typically
the hyperbolic tangent function tanh. However, we find similar performance for tanh and clipped-
ReLU nonlinearities and choose to use the clipped-ReLU for simplicity and uniformity with the rest
of the network.

Both GRU and simple RNN architectures benefit from batch normalization and show strong re-
sults with deep networks. However, Table 3 shows that for a fixed number of parameters, the GRU
architectures achieve better WER for all network depths. This is clear evidence of the long term
dependencies inherent in the speech recognition task present both within individual words and be-
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Architecture Channels Filter dimension Stride Regular Dev Noisy Dev

1-layer 1D 1280 11 2 9.52 19.36
2-layer 1D 640, 640 5, 5 1, 2 9.67 19.21
3-layer 1D 512, 512, 512 5, 5, 5 1, 1, 2 9.20 20.22
1-layer 2D 32 41x11 2x2 8.94 16.22
2-layer 2D 32, 32 41x11, 21x11 2x2, 2x1 9.06 15.71
3-layer 2D 32, 32, 96 41x11, 21x11, 21x11 2x2, 2x1, 2x1 8.61 14.74

Table 4: Comparison of WER for various arrangements of convolutional layers. In all cases, the convolutions
are followed by 7 recurrent layers and 1 fully connected layer. For 2D-invariant convolutions the first dimen-
sion is frequency and the second dimension is time. All models have BatchNorm, SortaGrad, and 35 million
parameters.

tween words. As we discuss in Section 3.8, even simple RNNs are able to implicitly learn a language
model due to the large amount of training data. Interestingly, the GRU networks with 5 or more re-
current layers do not significantly improve performance. We attribute this to the thinning from 1728
hidden units per layer for 1 recurrent layer to 768 hidden units per layer for 7 recurrent layers, to
keep the total number of parameters constant.

The GRU networks outperform the simple RNNs in Table 3. However, in later results (Section 6) we
find that as we scale up the model size, for a fixed computational budget the simple RNN networks
perform slightly better. Given this, most of the remaining experiments use the simple RNN layers
rather than the GRUs.

3.5 Frequency Convolutions

Temporal convolution is commonly used in speech recognition to efficiently model temporal trans-
lation invariance for variable length utterances. This type of convolution was first proposed for
neural networks in speech more than 25 years ago [67]. Many neural network speech models have a
first layer that processes input frames with some context window [16, 66]. This can be viewed as a
temporal convolution with a stride of one.

Additionally, sub-sampling is essential to make recurrent neural networks computationally tractable
with high sample-rate audio. The DS1 system accomplished this through the use of a spectrogram
as input and temporal convolution in the first layer with a stride parameter to reduce the number of
time-steps [26].

Convolutions in frequency and time domains, when applied to the spectral input features prior to
any other processing, can slightly improve ASR performance [1, 53, 60]. Convolution in frequency
attempts to model spectral variance due to speaker variability more concisely than what is pos-
sible with large fully connected networks. Since spectral ordering of features is removed by fully-
connected and recurrent layers, frequency convolutions work better as the first layers of the network.

We experiment with adding between one and three layers of convolution. These are both in the time-
and-frequency domain (2D invariance) and in the time-only domain (1D invariance). In all cases we
use a same convolution, preserving the number of input features in both frequency and time. In
some cases, we specify a stride across either dimension which reduces the size of the output. We do
not explicitly control for the number of parameters, since convolutional layers add a small fraction
of parameters to our networks. All networks shown in Table 4 have about 35 million parameters.

We report results on two datasets—a development set of 2048 utterances (“Regular Dev”) and a
much noisier dataset of 2048 utterances (“Noisy Dev”) randomly sampled from the CHiME 2015
development datasets [4]. We find that multiple layers of 1D-invariant convolutions provides a very
small benefit. The 2D-invariant convolutions improve results substantially on noisy data, while
providing a small benefit on clean data. The change from one layer of 1D-invariant convolution to
three layers of 2D-invariant convolution improves WER by 23.9% on the noisy development set.
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Dev no LM Dev LM

Stride Unigrams Bigrams Unigrams Bigrams

2 14.93 14.56 9.52 9.66
3 15.01 15.60 9.65 10.06
4 18.86 14.84 11.92 9.93

Table 5: Comparison of WER with different amounts of striding for unigram and bigram outputs on a model
with 1 layer of 1D-invariant convolution, 7 recurrent layers, and 1 fully connected layer. All models have
BatchNorm, SortaGrad, and 35 million parameters. The models are compared on a development set with and
without the use of a 5-gram language model.

3.6 Striding

In the convolutional layers, we apply a longer stride and wider context to speed up training as fewer
time-steps are required to model a given utterance. Downsampling the input sound (through FFT and
convolutional striding) reduces the number of time-steps and computation required in the following
layers, but at the expense of reduced performance.

In our Mandarin models, we employ striding in the straightforward way. However, in English,
striding can reduce accuracy simply because the output of our network requires at least one time-
step per output character, and the number of characters in English speech per time-step is high
enough to cause problems when striding2. To overcome this, we can enrich the English alphabet
with symbols representing alternate labellings like whole words, syllables or non-overlapping n-
grams. In practice, we use non-overlapping bi-graphemes or bigrams, since these are simple to
construct, unlike syllables, and there are few of them compared to alternatives such as whole words.
We transform unigram labels into bigram labels through a simple isomorphism.

Non-overlapping bigrams shorten the length of the output transcription and thus allow for a decrease
in the length of the unrolled RNN. The sentence the cat sat with non-overlapping bigrams is seg-
mented as [th, e, space, ca, t, space, sa, t]. Notice that for words with odd number of characters, the
last character becomes an unigram and space is treated as an unigram as well. This isomorphism
ensures that the same words are always composed of the same bigram and unigram tokens. The
output set of bigrams consists of all bigrams that occur in the training set.

In Table 5 we show results for both the bigram and unigram systems for various levels of striding,
with or without a language model. We observe that bigrams allow for larger strides without any
sacrifice in in the word error rate. This allows us to reduce the number of time-steps of the unrolled
RNN benefiting both computation and memory usage.

3.7 Row Convolution and Unidirectional Models

Bidirectional RNN models are challenging to deploy in an online, low-latency setting, because they
are built to operate on an entire sample, and so it is not possible to perform the transcription process
as the utterance streams from the user. We have found an unidirectional architecture that performs
as well as our bidirectional models. This allows us to use unidirectional, forward-only RNN layers
in our deployment system.

To accomplish this, we employ a special layer that we call row convolution, shown in Figure 3. The
intuition behind this layer is that we only need a small portion of future information to make an
accurate prediction at the current time-step. Suppose at time-step t, we use a future context of τ
steps. We now have a feature matrix ht:t+τ = [ht,ht+1, ...,ht+τ ] of size d × (τ + 1). We define a
parameter matrix W of the same size as ht:t+τ . The activations rt for the new layer at time-step t
are

2Chinese characters are more similar to English syllables than English characters. This is reflected in our
training data, where there are on average 14.1 characters/s in English, while only 3.3 characters/s in Mandarin.
Conversely, the Shannon entropy per character as calculated from occurrence in the training set, is less in
English due to the smaller character set—4.9 bits/char compared to 12.6 bits/char in Mandarin. This implies
that spoken Mandarin has a lower temporal entropy density, ∼41 bits/s compared to ∼58 bits/s, and can thus
more easily be temporally compressed without losing character information.
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Recurrent layer

Row conv layer

ht ht+1 ht+2 ht+3

rt+3rt+2rt+1rt

Figure 3: Row convolution architecture with future context size of 2

rt,i =

τ+1∑
j=1

Wi,jht+j−1,i, for 1 ≤ i ≤ d. (11)

Since the convolution-like operation in Eq. 11 is row oriented for both W and ht:t+τ , we call this
layer row convolution.

We place the row convolution layer above all recurrent layers. This has two advantages. First, this
allows us to stream all computation below the row convolution layer on a finer granularity given little
future context is needed. Second, this results in better CER compared to the best bidirectional model
for Mandarin. We conjecture that the recurrent layers have learned good feature representations,
so the row convolution layer simply gathers the appropriate information to feed to the classifier.
Results for a unidirectional Mandarin speech system with row convolution and a comparison to a
bidirectional model are given in Section 7 on deployment.

3.8 Language Model

We train our RNN Models over millions of unique utterances, which enables the network to learn a
powerful implicit language model. Our best models are quite adept at spelling, without any external
language constraints. Further, in our development datasets we find many cases where our models can
implicitly disambiguate homophones—for example, “he expects the Japanese agent to sell it for two
hundred seventy five thousand dollars”. Nevertheless, the labeled training data is small compared
to the size of unlabeled text corpora that are available. Thus we find that WER improves when we
supplement our system with a language model trained from external text.

We use an n-gram language model since they scale well to large amounts of unlabeled text [26].
For English, our language model is a Kneser-Ney smoothed 5-gram model with pruning that is
trained using the KenLM toolkit [28] on cleaned text from the Common Crawl Repository3. The
vocabulary is the most frequently used 400,000 words from 250 million lines of text, which produces
a language model with about 850 million n-grams. For Mandarin, the language model is a Kneser-
Ney smoothed character level 5-gram model with pruning that is trained on an internal text corpus
of 8 billion lines of text. This produces a language model with about 2 billion n-grams.

During inference we search for the transcription y that maximizes Q(y) shown in Equation 12. This
is a linear combination of log probabilities from the CTC trained network and language model, along
with a word insertion term [26].

Q(y) = log(pctc(y|x)) + α log(plm(y)) + β word_count(y) (12)

The weight α controls the relative contributions of the language model and the CTC network. The
weight β encourages more words in the transcription. These parameters are tuned on a development
set. We use a beam search to find the optimal transcription [27].

3http://commoncrawl.org
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Language Architecture Dev no LM Dev LM

English 5-layer, 1 RNN 27.79 14.39
English 9-layer, 7 RNN 14.93 9.52
Mandarin 5-layer, 1 RNN 9.80 7.13
Mandarin 9-layer, 7 RNN 7.55 5.81

Table 6: Comparison of WER for English and CER for Mandarin with and without a language model. These
are simple RNN models with only one layer of 1D invariant convolution.

Table 6 shows that an external language model helps both English and Mandarin speech systems.
The relative improvement given by the language model drops from 48% to 36% in English and 27%
to 23% in Mandarin, as we go from a model with 5 layers and 1 recurrent layer to a model with 9
layers and 7 recurrent layers. We hypothesize that the network builds a stronger implicit language
model with more recurrent layers.

The relative performance improvement from a language model is higher in English than in Mandarin.
We attribute this to the fact that a Chinese character represents a larger block of information than
an English character. For example, if we output directly to syllables or words in English, the model
would make fewer spelling mistakes and the language model would likely help less.

3.9 Adaptation to Mandarin

The techniques that we have described so far can be used to build an end-to-end Mandarin speech
recognition system that outputs Chinese characters directly. This precludes the need to construct a
pronunciation model, which is often a fairly involved component for porting speech systems to other
languages [59]. Direct output to characters also precludes the need to explicitly model language
specific pronunciation features. For example we do not need to model Mandarin tones explicitly, as
some speech systems must do [59, 45].

The only architectural changes we make to our networks are due to the characteristics of the Chinese
character set. Firstly, the output layer of the network outputs about 6000 characters, which includes
the Roman alphabet, since hybrid Chinese-English transcripts are common. We incur an out of
vocabulary error at evaluation time if a character is not contained in this set. This is not a major
concern, as our test set has only 0.74% out of vocab characters.

We use a character level language model in Mandarin as words are not usually segmented in text.
The word insertion term of Equation 12 becomes a character insertion term. In addition, we find that
the performance of the beam search during decoding levels off at a smaller beam size. This allows
us to use a beam size of 200 with a negligible degradation in CER. In Section 6.2, we show that
our Mandarin speech models show roughly the same improvements to architectural changes as our
English speech models.

4 System Optimizations

Our networks have tens of millions of parameters, and the training algorithm takes tens of single-
precision exaFLOPs to converge. Since our ability to evaluate hypotheses about our data and mod-
els depends on the ability to train models quickly, we built a highly optimized training system.
This system has two main components—a deep learning library written in C++, along with a high-
performance linear algebra library written in both CUDA and C++. Our optimized software, running
on dense compute nodes with 8 Titan X GPUs per node, allows us to sustain 24 single-precision
teraFLOP/second when training a single model on one node. This is 45% of the theoretical peak
computational throughput of each node. We also can scale to multiple nodes, as outlined in the next
subsection.

4.1 Scalability and Data-Parallelism

We use the standard technique of data-parallelism to train on multiple GPUs using synchronous
SGD. Our most common configuration uses a minibatch of 512 on 8 GPUs. Our training pipeline
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binds one process to each GPU. These processes then exchange gradient matrices during the back-
propagation by using all-reduce, which exchanges a matrix between multiple processes and sums
the result so that at the end, each process has a copy of the sum of all matrices from all processes.

We find synchronous SGD useful because it is reproducible and deterministic. We have found
that the appearance of non-determinism in our system often signals a serious bug, and so having
reproducibility as a goal has greatly facilitates debugging. In contrast, asynchronous methods such
as asynchronous SGD with parameter servers as found in Dean et al. [18] typically do not provide
reproducibility and are therefore more difficult to debug. Synchronous SGD is simple to understand
and implement. It scales well as we add multiple nodes to the training process.
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Figure 4: Scaling comparison of two networks—a 5 layer model with 3 recurrent layers containing 2560
hidden units in each layer and a 9 layer model with 7 recurrent layers containing 1760 hidden units in each
layer. The times shown are to train 1 epoch. The 5 layer model trains faster because it uses larger matrices and
is more computationally efficient.

Figure 4 shows that time taken to train one epoch halves as we double the number of GPUs that
we train on, thus achieving near-linear weak scaling. We keep the minibatch per GPU constant at
64 during this experiment, effectively doubling the minibatch as we double the number of GPUs.
Although we have the ability to scale to large minibatches, we typically use either 8 or 16 GPUs
during training with a minibatch of 512 or 1024, in order to converge to the best result.

Since all-reduce is critical to the scalability of our training, we wrote our own implementation of
the ring algorithm [48, 65] for higher performance and better stability. Our implementation avoids
extraneous copies between CPU and GPU, and is fundamental to our scalability. We configure
OpenMPI with the smcuda transport that can send and receive buffers residing in the memory of
two different GPUs by using GPUDirect. When two GPUs are in the same PCI root complex,
this avoids any unnecessary copies to CPU memory. This also takes advantage of tree-structured
interconnects by running multiple segments of the ring concurrently between neighboring devices.
We built our implementation using MPI send and receive, along with CUDA kernels for the element-
wise operations.

Table 7 compares the performance of our all-reduce implementation with that provided by OpenMPI
version 1.8.5. We report the time spent in all-reduce for a full training run that ran for one epoch
on our English dataset using a 5 layer, 3 recurrent layer architecture with 2560 hidden units for all
layers. In this table, we use a minibatch of 64 per GPU, expanding the algorithmic minibatch as we
scale to more GPUs. We see that our implementation is considerably faster than OpenMPI’s when
the communication is within a node (8 GPUs or less). As we increase the number of GPUs and
increase the amount of inter-node communication, the gap shrinks, although our implementation is
still 2-4X faster.

All of our training runs use either 8 or 16 GPUs, and in this regime, our all-reduce implementation
results in 2.5× faster training for the full training run, compared to using OpenMPI directly. Opti-
mizing all-reduce has thus resulted in important productivity benefits for our experiments, and has
made our simple synchronous SGD approach scalable.
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GPU OpenMPI Our Performance
all-reduce all-reduce Gain

4 55359.1 2587.4 21.4
8 48881.6 2470.9 19.8

16 21562.6 1393.7 15.5
32 8191.8 1339.6 6.1
64 1395.2 611.0 2.3

128 1602.1 422.6 3.8

Table 7: Comparison of two different all-reduce implementations. All times are in seconds. Performance gain
is the ratio of OpenMPI all-reduce time to our all-reduce time.

Language Architecture CPU CTC Time GPU CTC Time Speedup

English 5-layer, 3 RNN 5888.12 203.56 28.9
Mandarin 5-layer, 3 RNN 1688.01 135.05 12.5

Table 8: Comparison of time spent in seconds in computing the CTC loss function and gradient in one epoch
for two different implementations. Speedup is the ratio of CPU CTC time to GPU CTC time.

4.2 GPU implementation of CTC loss function

Calculating the CTC loss function is more complicated than performing forward and back prop-
agation on our RNN architectures. Originally, we transferred activations from the GPUs to the
CPU, where we calculated the loss function using an OpenMP parallelized implementation of CTC.
However, this implementation limited our scalability rather significantly, for two reasons. Firstly,
it became computationally more significant as we improved efficiency and scalability of the RNN
itself. Secondly, transferring large activation matrices between CPU and GPU required us to spend
interconnect bandwidth for CTC, rather than on transferring gradient matrices to allow us to scale
using data parallelism to more processors.

To overcome this, we wrote a GPU implementation of the CTC loss function. Our parallel imple-
mentation relies on a slight refactoring to simplify the dependences in the CTC calculation, as well
as the use of optimized parallel sort implementations from ModernGPU [5]. We give more details
of this parallelization in the Appendix.

Table 8 compares the performance of two CTC implementations. The GPU implementation saves
us 95 minutes per epoch in English, and 25 minutes in Mandarin. This reduces overall training time
by 10-20%, which is also an important productivity benefit for our experiments.

4.3 Memory allocation

Our system makes frequent use of dynamic memory allocations to GPU and CPU memory, mainly
to store activation data for variable length utterances, and for intermediate results. Individual al-
locations can be very large; over 1 GB for the longest utterances. For these very large allocations
we found that CUDA’s memory allocator and even std::malloc introduced significant overhead
into our application—over a 2x slowdown from using std::malloc in some cases. This is because
both cudaMalloc and std::malloc forward very large allocations to the operating system or GPU
driver to update the system page tables. This is a good optimization for systems running multiple
applications, all sharing memory resources, but editing page tables is pure overhead for our system
where nodes are dedicated entirely to running a single model. To get around this limitation, we
wrote our own memory allocator for both CPU and GPU allocations. Our implementation follows
the approach of the last level shared allocator in jemalloc: all allocations are carved out of contigu-
ous memory blocks using the buddy algorithm [34]. To avoid fragmentation, we preallocate all of
GPU memory at the start of training and subdivide individual allocations from this block. Simi-
larly, we set the CPU memory block size that we forward to mmap to be substantially larger than
std::malloc, at 12GB.
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Dataset Speech Type Hours

WSJ read 80
Switchboard conversational 300
Fisher conversational 2000
LibriSpeech read 960
Baidu read 5000
Baidu mixed 3600

Total 11940

Table 9: Summary of the datasets used to train DS2 in English. The Wall Street Journal (WSJ), Switchboard
and Fisher [13] corpora are all published by the Linguistic Data Consortium. The LibriSpeech dataset [46] is
available free on-line. The other datasets are internal Baidu corpora.

Most of the memory required for training deep recurrent networks is used to store activations through
each layer for use by back propagation, not to store the parameters of the network. For example,
storing the weights for a 70M parameter network with 9 layers requires approximately 280 MB of
memory, but storing the activations for a batch of 64, seven-second utterances requires 1.5 GB of
memory. TitanX GPUs include 12GB of GDDR5 RAM, and sometimes very deep networks can
exceed the GPU memory capacity when processing long utterances. This can happen unpredictably,
especially when the distribution of utterance lengths includes outliers, and it is desirable to avoid a
catastrophic failure when this occurs. When a requested memory allocation exceeds available GPU
memory, we allocate page-locked GPU-memory-mapped CPU memory using cudaMallocHost in-
stead. This memory can be accessed directly by the GPU by forwarding individual memory trans-
actions over PCIe at reduced bandwidth, and it allows a model to continue to make progress even
after encountering an outlier.

The combination of fast memory allocation with a fallback mechanism that allows us to slightly
overflow available GPU memory in exceptional cases makes the system significantly simpler, more
robust, and more efficient.

5 Training Data

Large-scale deep learning systems require an abundance of labeled training data. We have collected
an extensive training dataset for both English and Mandarin speech models, in addition to augment-
ing our training with publicly available datasets. In English we use 11,940 hours of labeled speech
data containing 8 million utterances summarized in Table 9. For the Mandarin system we use 9,400
hours of labeled audio containing 11 million utterances. The Mandarin speech data consists of in-
ternal Baidu corpora, representing a mix of read speech and spontaneous speech, in both standard
Mandarin and accented Mandarin.

5.1 Dataset Construction

Some of the internal English (3,600 hours) and Mandarin (1,400 hours) datasets were created from
raw data captured as long audio clips with noisy transcriptions. The length of these clips ranged from
several minutes to more than hour, making it impractical to unroll them in time in the RNN during
training. To solve this problem, we developed an alignment, segmentation and filtering pipeline that
can generate a training set with shorter utterances and few erroneous transcriptions.

The first step in the pipeline is to use an existing bidirectional RNN model trained with CTC to
align the transcription to the frames of audio. For a given audio-transcript pair, (x, y), we find the
alignment that maximizes

`∗ = argmax
`∈Align(x,y)

T∏
t

pctc(`t|x; θ). (13)

This is essentially a Viterbi alignment found using a RNN model trained with CTC. Since Equation 9
integrates over the alignment, the CTC loss function is never explicitly asked to produce an accurate
alignment. In principle, CTC could choose to emit all the characters of the transcription after some
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fixed delay and this can happen with unidirectional RNNs [54]. However, we found that CTC
produces an accurate alignment when trained with a bidirectional RNN.

Following the alignment is a segmentation step that splices the audio and the corresponding aligned
transcription whenever it encounters a long series of consecutive blank labels occurs, since this
usually denotes a stretch of silence. By tuning the number of consecutive blanks, we can tune the
length of the utterances generated. For the English speech data, we also require a space token to be
within the stretch of blanks in order to segment only on word boundaries. We tune the segmentation
to generate utterances that are on average 7 seconds long.

The final step in the pipeline removes erroneous examples that arise from a failed alignment. We
crowd source the ground truth transcriptions for several thousand examples. The word level edit
distance between the ground truth and the aligned transcription is used to produce a good or bad
label. The threshold for the word level edit distance is chosen such that the resulting WER of the
good portion of the development set is less than 5%. We then train a linear classifier to accurately
predict bad examples given the input features generated from the speech recognizer. We find the
following features useful: the raw CTC cost, the CTC cost normalized by the sequence length,
the CTC cost normalized by the transcript length, the ratio of the sequence length to the transcript
length, the number of words in the transcription and the number of characters in the transcription.
For the English dataset, we find that the filtering pipeline reduces the WER from 17% to 5% while
retaining more than 50% of the examples.

5.2 Data Augmentation

We augment our training data by adding noise to increase the effective size of our training data
and to improve our robustness to noisy speech [26]. Although the training data contains some
intrinsic noise, we can increase the quantity and variety of noise through augmentation. Too much
noise augmentation tends to make optimization difficult and can lead to worse results, and too little
noise augmentation makes the system less robust to low signal-to-noise speech. We find that a good
balance is to add noise to 40% of the utterances that are chosen at random. The noise source consists
of several thousand hours of randomly selected audio clips combined to produce hundreds of hours
of noise.

5.3 Scaling Data

Our English and Mandarin corpora are substantially larger than those commonly reported in speech
recognition literature. In Table 10, we show the effect of increasing the amount of labeled training
data on WER. This is done by randomly sampling the full dataset before training. For each dataset,
the model was trained for up to 20 epochs though usually early-stopped based on the error on a held
out development set. We note that the WER decreases with a power law for both the regular and
noisy development sets. The WER decreases by ∼40% relative for each factor of 10 increase in
training set size. We also observe a consistent gap in WER (∼60% relative) between the regular and
noisy datasets, implying that more data benefits both cases equally.

This implies that a speech system will continue to improve with more labeled training data. We
hypothesize that equally as important as increasing raw number of hours is increasing the number
of speech contexts that are captured in the dataset. A context can be any property that makes speech
unique including different speakers, background noise, environment, and microphone hardware.
While we do not have the labels needed to validate this claim, we suspect that measuring WER as
a function of speakers in the dataset would lead to much larger relative gains than simple random
sampling.

6 Results

To better assess the real-world applicability of our speech system, we evaluate on a wide range of
test sets. We use several publicly available benchmarks and several test sets collected internally.
Together these test sets represent a wide range of challenging speech environments including low
signal-to-noise ratios (noisy and far-field), accented, read, spontaneous and conversational speech.
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Fraction of Data Hours Regular Dev Noisy Dev

1% 120 29.23 50.97
10% 1200 13.80 22.99
20% 2400 11.65 20.41
50% 6000 9.51 15.90

100% 12000 8.46 13.59

Table 10: Comparison of English WER for Regular and Noisy development sets on increasing training dataset
size. The architecture is a 9-layer model with 2 layers of 2D-invariant convolution and 7 recurrent layers with
68M parameters.

All models are trained for 20 epochs on either the full English dataset, described in Table 9, or
the full Mandarin dataset described in Section 5. We use stochastic gradient descent with Nesterov
momentum [61] along with a minibatch of 512 utterances. If the norm of the gradient exceeds
a threshold of 400, it is rescaled to 400 [47]. The model which performs the best on a held-out
development set during training is chosen for evaluation. The learning rate is chosen from [1 ×
10−4, 6 × 10−4] to yield fastest convergence and annealed by a constant factor of 1.2 after each
epoch. We use a momentum of 0.99 for all models.

The language models used are those described in Section 3.8. The decoding parameters from Equa-
tion 12 are tuned on a held-out development set. We use a beam size of 500 for the English decoder
and a beam size of 200 for the Mandarin decoder.

6.1 English

The best DS2 model has 11 layers with 3 layers of 2D convolution, 7 bidirectional recurrent layers,
a fully-connected output layer along with Batch Normalization. The first layer outputs to bigrams
with a temporal stride of 3. By comparison the DS1 model has 5 layers with a single bidirectional
recurrent layer and it outputs to unigrams with a temporal stride of 2 in the first layer. We report
results on several test sets for both the DS2 and DS1 model. We do not tune or adapt either model
to any of the speech conditions in the test sets. Language model decoding parameters are set once
on a held-out development set.

To put the performance of our system in context, we benchmark most of our results against human
workers, since speech recognition is an audio perception and language understanding problem that
humans excel at. We obtain a measure of human level performance by paying workers from Amazon
Mechanical Turk to hand-transcribe all of our test sets. Two workers transcribe the same audio clip,
that is typically about 5 seconds long, and we use the better of the two transcriptions for the final
WER calculation. They are free to listen to the audio clip as many times as they like. These workers
are mostly based in the United States, and on average spend about 27 seconds per transcription.
The hand-transcribed results are compared to the existing ground truth to produce a WER. While
the existing ground truth transcriptions do have some label error, this is rarely more than 1%. This
implies that disagreement between the ground truth transcripts and the human level transcripts is a
good heuristic for human level performance.

6.1.1 Model Size

Our English speech training set is substantially larger than the size of commonly used speech
datasets. Furthermore, the data is augmented with noise synthesis. To get the best generalization
error, we expect that the model size must increase to fully exploit the patterns in the data. In Sec-
tion 3.2 we explored the effect of model depth while fixing the number of parameters. In contrast,
here we show the effect of varying model size on the performance of the speech system. We only
vary the size of each layer, while keeping the depth and other architectural parameters constant. We
evaluate the models on the same Regular and Noisy development sets that we use in Section 3.5.

The models in Table 11 differ from those in Table 3 in that we increase the the stride to 3 and output
to bigrams. Because we increase the model size to as many as 100 million parameters, we find that
an increase in stride is necessary for fast computation and memory constraints. However, in this
regime we note that the performance advantage of the GRU networks appears to diminish over the
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Model size Model type Regular Dev Noisy Dev

18× 106 GRU 10.59 21.38
38× 106 GRU 9.06 17.07
70× 106 GRU 8.54 15.98
70× 106 RNN 8.44 15.09
100× 106 GRU 7.78 14.17
100× 106 RNN 7.73 13.06

Table 11: Comparing the effect of model size on the WER of the English speech system on both the regular and
noisy development sets. We vary the number of hidden units in all but the convolutional layers. The GRU model
has 3 layers of bidirectional GRUs with 1 layer of 2D-invariant convolution. The RNN model has 7 layers of
bidirectional simple recurrence with 3 layers of 2D-invariant convolution. Both models output bigrams with a
temporal stride of 3. All models contain approximately 35 million parameters and are trained with BatchNorm
and SortaGrad.

Test set DS1 DS2

Baidu Test 24.01 13.59

Table 12: Comparison of DS1 and DS2 WER on an internal test set of 3,300 examples. The test set contains a
wide variety of speech including accents, low signal-to-noise speech, spontaneous and conversational speech.

simple RNN. In fact, for the 100 million parameter networks the simple RNN performs better than
the GRU network and is faster to train despite the 2 extra layers of convolution.

Table 11 shows that the performance of the system improves consistently up to 100 million parame-
ters. All further English DS2 results are reported with this same 100 million parameter RNN model
since it achieves the lowest generalization errors.

Table 12 shows that the 100 million parameter RNN model (DS2) gives a 43.4% relative improve-
ment over the 5-layer model with 1 recurrent layer (DS1) on an internal Baidu dataset of 3,300
utterances that contains a wide variety of speech including challenging accents, low signal-to-noise
ratios from far-field or background noise, spontaneous and conversational speech.

6.1.2 Read Speech

Read speech with high signal-to-noise ratio is arguably the easiest large vocabulary for a continuous
speech recognition task. We benchmark our system on two test sets from the Wall Street Journal
(WSJ) corpus of read news articles. These are available in the LDC catalog as LDC94S13B and
LDC93S6B. We also take advantage of the recently developed LibriSpeech corpus constructed using
audio books from the LibriVox project [46].

Table 13 shows that the DS2 system outperforms humans in 3 out of the 4 test sets and is competitive
on the fourth. Given this result, we suspect that there is little room for a generic speech system to
further improve on clean read speech without further domain adaptation.

Read Speech

Test set DS1 DS2 Human

WSJ eval’92 4.94 3.60 5.03
WSJ eval’93 6.94 4.98 8.08
LibriSpeech test-clean 7.89 5.33 5.83
LibriSpeech test-other 21.74 13.25 12.69

Table 13: Comparison of WER for two speech systems and human level performance on read speech.
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Accented Speech

Test set DS1 DS2 Human

VoxForge American-Canadian 15.01 7.55 4.85
VoxForge Commonwealth 28.46 13.56 8.15
VoxForge European 31.20 17.55 12.76
VoxForge Indian 45.35 22.44 22.15

Table 14: Comparing WER of the DS1 system to the DS2 system on accented speech.

Noisy Speech

Test set DS1 DS2 Human

CHiME eval clean 6.30 3.34 3.46
CHiME eval real 67.94 21.79 11.84
CHiME eval sim 80.27 45.05 31.33

Table 15: Comparison of DS1 and DS2 system on noisy speech. “CHiME eval clean” is a noise-free baseline.
The “CHiME eval real” dataset is collected in real noisy environments and the “CHiME eval sim” dataset has
similar noise synthetically added to clean speech. Note that we use only one of the six channels to test each
utterance.

6.1.3 Accented Speech

Our source for accented speech is the publicly available VoxForge (http://www.voxforge.org)
dataset, which has clean speech read from speakers with many different accents. We group these
accents into four categories. The American-Canadian and Indian groups are self-explanatory. The
Commonwealth accent denotes speakers with British, Irish, South African, Australian and New
Zealand accents. The European group contains speakers with accents from countries in Europe that
do not have English as a first language. We construct a test set from the VoxForge data with 1024
examples from each accent group for a total of 4096 examples.

Performance on these test sets is to some extent a measure of the breadth and quality of our training
data. Table 14 shows that our performance improved on all the accents when we include more
accented training data and use an architecture that can effectively train on that data. However human
level performance is still notably better than that of DS2 for all but the Indian accent.

6.1.4 Noisy Speech

We test our performance on noisy speech using the publicly available test sets from the recently
completed third CHiME challenge [4]. This dataset has 1320 utterances from the WSJ test set
read in various noisy environments, including a bus, a cafe, a street and a pedestrian area. The
CHiME set also includes 1320 utterances with simulated noise from the same environments as well
as the control set containing the same utterances delivered by the same speakers in a noise-free
environment. Differences between results on the control set and the noisy sets provide a measure of
the network’s ability to handle a variety of real and synthetic noise conditions. The CHiME audio
has 6 channels and using all of them can provide substantial performance improvements [69]. We
use a single channel for all our results, since multi-channel audio is not pervasive on most devices.
Table 15 shows that DS2 substantially improves upon DS1, however DS2 is worse than human level
performance on noisy data. The relative gap between DS2 and human level performance is larger
when the data comes from a real noisy environment instead of synthetically adding noise to clean
speech.

6.2 Mandarin

In Table 16 we compare several architectures trained on the Mandarin Chinese speech, on a develop-
ment set of 2000 utterances as well as a test set of 1882 examples of noisy speech. This development
set was also used to tune the decoding parameters We see that the deepest model with 2D-invariant

19

http://www.voxforge.org


convolution and BatchNorm outperforms the shallow RNN by 48% relative, thus continuing the
trend that we saw with the English system—multiple layers of bidirectional recurrence improves
performance substantially.

Architecture Dev Test

5-layer, 1 RNN 7.13 15.41
5-layer, 3 RNN 6.49 11.85
5-layer, 3 RNN + BatchNorm 6.22 9.39
9-layer, 7 RNN + BatchNorm + 2D conv 5.81 7.93

Table 16: Comparison of the improvements in DeepSpeech with architectural improvements. The development
and test sets are Baidu internal corpora. All the models in the table have about 80 million parameters each

We find that our best Mandarin Chinese speech system transcribes short voice-query like utterances
better than a typical Mandarin Chinese speaker. To benchmark against humans we ran a test with
100 randomly selected utterances and had a group of 5 humans label all of them together. The group
of humans had an error rate of 4.0% as compared to the speech systems performance of 3.7%. We
also compared a single human transcriber to the speech system on 250 randomly selected utterances.
In this case the speech system performs much better: 9.7% for the human compared to 5.7% for the
speech model.

7 Deployment

Real-world applications usually require a speech system to transcribe in real time or with relatively
low latency. The system used in Section 6.1 is not well-designed for this task, for several reasons.
First, since the RNN has several bidirectional layers, transcribing the first part of an utterance re-
quires the entire utterance to be presented to the RNN. Second, since we use a wide beam when
decoding with a language model, beam search can be expensive, particularly in Mandarin where the
number of possible next characters is very large (around 6000). Third, as described in Section 3, we
normalize power across an entire utterance, which again requires the entire utterance to be available
in advance.

We solve the power normalization problem by using some statistics from our training set to perform
an adaptive normalization of speech inputs during online transcription. We can solve the other
problems by modifying our network and decoding procedure to produce a model that performs
almost as well while having much lower latency. We focus on our Mandarin system since some
aspects of that system are more challenging to deploy (e.g. the large character set), but the same
techniques could also be applied in English.

In this section, latency refers to the computational latency of our speech system as measured from
the end of an utterance until the transcription is produced. This latency does not include data trans-
mission over the internet, and does not measure latency from the beginning of an utterance until the
first transcription is produced. We focus on latency from end of utterance to transcription because it
is important to applications using speech recognition.

7.1 Batch Dispatch

In order to deploy our relatively large deep neural networks at low latency, we have paid special at-
tention to efficiency during deployment. Most internet applications process requests individually as
they arrive in the data center. This makes for a straightforward implementation where each request
can be managed by one thread. However, processing requests individually is inefficient computa-
tionally, for two main reasons. Firstly, when processing requests individually, the processor must
load all the weights of the network for each request. This lowers the arithmetic intensity of the work-
load, and tends to make the computation memory bandwidth bound, as it is difficult to effectively
use on-chip caches when requests are presented individually. Secondly, the amount of parallelism
that can be exploited to classify one request is limited, making it difficult to exploit SIMD or multi-
core parallelism. RNNs are especially challenging to deploy because evaluating RNNs sample by
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Figure 5: Probability that a request is processed in a batch of given size

sample relies on sequential matrix vector multiplications, which are bandwidth bound and difficult
to parallelize.

To overcome these issues, we built a batching scheduler called Batch Dispatch that assembles
streams of data from user requests into batches before performing forward propagation on these
batches. In this case, there is a tradeoff between increased batch size, and consequently improved
efficiency, and increased latency. The more we buffer user requests to assemble a large batch, the
longer users must wait for their results. This places constraints on the amount of batching we can
perform.

We use an eager batching scheme that processes each batch as soon as the previous batch is com-
pleted, regardless of how much work is ready by that point. This scheduling algorithm has proved
to be the best at reducing end-user latency, despite the fact that it is less efficient computationally,
since it does not attempt to maximize batch size.

Figure 5 shows the probability that a request is processed in a batch of given size for our production
system running on a single NVIDIA Quadro K1200 GPU, with 10-30 concurrent user requests. As
expected, batching works best when the server is heavily loaded: as load increases, the distribution
shifts to favor processing requests in larger batches. However, even with a light load of only 10
concurrent user requests, our system performs more than half the work in batches with at least 2
samples.
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Figure 6: Median and 98 percentile latencies as a function of server load

We see in Figure 6, that our system achieves a median latency of 44 ms, and a 98 percentile latency
of 70 ms when loaded with 10 concurrent streams. As the load increases on the server, the batching
scheduler shifts work to more efficient batches, which keeps latency low. This shows that Batch
Dispatch makes it possible to deploy these large models at high throughput and low latency.
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7.2 Deployment Optimized Matrix Multiply Kernels

We have found that deploying our models using half-precision (16-bit) floating-point arithmetic does
not measurably change recognition accuracy. Because deployment does not require any updates to
the network weights, it is far less sensitive to numerical precision than training. Using half-precision
arithmetic saves memory space and bandwidth, which is especially useful for deployment, since
RNN evaluation is dominated by the cost of caching and streaming the weight matrices.

As seen in Section 7.1, the batch size during deployment is much smaller than in training. We
found that standard BLAS libraries are inefficient at this batch size. To overcome this, we wrote our
own half-precision matrix-matrix multiply kernel. For 10 simultaneous streams over 90 percent of
batches are forN ≤ 4, a regime where the matrix multiply will be bandwidth bound. We store theA
matrix transposed to maximize bandwidth by using the widest possible vector loads while avoiding
transposition after loading. Each warp computes four rows of output for allN output columns. Note
that for N ≤ 4 the B matrix fits entirely in the L1 cache. This scheme achieves 90 percent of peak
bandwidth for N ≤ 4 but starts to lose efficiency for larger N as the B matrix stops fitting into the
L1 cache. Nonetheless, it continues to provide improved performance over existing libraries up to
N = 10.

Figure 7 shows that our deployment kernel sustains a higher computational throughput than those
from Nervana Systems [44] on the K1200 GPU, across the entire range of batch sizes that we use
in deployment. Both our kernels and the Nervana kernels are significantly faster than NVIDIA
CUBLAS version 7.0, more details are found here [20].

7.3 Beam Search

Performing the beam search involves repeated lookups in the n-gram language model, most of which
translate to uncached reads from memory. The direct implementation of beam search means that
each time-step dispatches one lookup per character for each beam. In Mandarin, this results in over
1M lookups per 40ms stride of speech data, which is too slow for deployment. To deal with this
problem, we use a heuristic to further prune the beam search. Rather than considering all characters
as viable additions to the beam, we only consider the fewest number of characters whose cumulative
probability is at least p. In practice, we have found that p = 0.99 works well. Additionally, we limit
ourselves to no more than 40 characters. This speeds up the Mandarin language model lookup time
by a factor of 150x, and has a negligible effect on the CER (0.1-0.3% relative).

7.4 Results

We can deploy our system at low latency and high throughput without sacrificing much accuracy.
On a held-out set of 2000 utterances, our research system achieves 5.81 character error rate whereas
the deployed system achieves 6.10 character error rate. This is only a 5% relative degradation for
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the deployed system. In order to accomplish this, we employ a neural network architecture with low
deployment latency, reduce the precision of our network to 16-bit, built a batching scheduler to more
efficiently evaluate RNNs, and find a simple heuristic to reduce beam search cost. The model has
five forward-only recurrent layers with 2560 hidden units, one row convolution layer (Section 3.7)
with τ = 19, and one fully-connected layer with 2560 hidden units. These techniques allow us to
deploy Deep Speech at low cost to interactive applications.

8 Conclusion

End-to-end deep learning presents the exciting opportunity to improve speech recognition systems
continually with increases in data and computation. Indeed, our results show that, compared to the
previous incarnation, Deep Speech has significantly closed the gap in transcription performance with
human workers by leveraging more data and larger models. Further, since the approach is highly
generic, we’ve shown that it can quickly be applied to new languages. Creating high-performing
recognizers for two very different languages, English and Mandarin, required essentially no expert
knowledge of the languages. Finally, we have also shown that this approach can be efficiently
deployed by batching user requests together on a GPU server, paving the way to deliver end-to-end
Deep Learning technologies to users.

To achieve these results, we have explored various network architectures, finding several effective
techniques: enhancements to numerical optimization through SortaGrad and Batch Normalization,
evaluation of RNNs with larger strides with bigram outputs for English, searching through both
bidirectional and unidirectional models. This exploration was powered by a well optimized, High
Performance Computing inspired training system that allows us to train new, full-scale models on
our large datasets in just a few days.

Overall, we believe our results confirm and exemplify the value of end-to-end Deep Learning meth-
ods for speech recognition in several settings. In those cases where our system is not already com-
parable to humans, the difference has fallen rapidly, largely because of application-agnostic Deep
Learning techniques. We believe these techniques will continue to scale, and thus conclude that the
vision of a single speech system that outperforms humans in most scenarios is imminently achiev-
able.
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neural networks,âĂİ acoustics speech and signal processing. IEEE Transactions on Acoustics, Speech
and Signal Processing, 37(3):328–339, 1989.

[68] R. Williams and J. Peng. An efficient gradient-based algorithm for online training of recurrent network
trajectories. Neural computation, 2:490–501, 1990.

[69] T. Yoshioka, N. Ito, M. Delcroix, A. Ogawa, K. Kinoshita, M. F. C. Yu, W. J. Fabian, M. Espi, T. Higuchi,
S. Araki, and T. Nakatani. The ntt chime-3 system: Advances in speech enhancement and recognition for
mobile multi-microphone devices. In IEEE ASRU, 2015.

[70] W. Zaremba and I. Sutskever. Learning to execute. abs/1410.4615, 2014. http://arxiv.org/abs/1410.4615.

A Scalability improvements

In this section, we discuss some of our scalability improvements in more detail.

A.1 Node and cluster architecture

The software stack runs on a compute dense node built from 2 Intel CPUs and 8 NVIDIA Titan
X GPUs, with peak single-precision computational throughput of 53 teraFLOP/second. Each node
also has 384 GB of CPU memory and an 8 TB storage volume built from two 4 TB hard disks in
RAID-0 configuration. We use the CPU memory to cache our input data so that we are not directly
exposed to the low bandwidth and high latency of spinning disks. We replicate our English and
Mandarin datasets on each node’s local hard disk. This allows us to use our network only for weight
updates and avoids having to rely on centralized file servers.

GPU GPU GPU GPU GPU GPU GPU GPU

PLXPLXPLX

CPU CPU

PLX

Figure 8: Schematic of our training node where PLX indicates a PCI switch and the dotted box includes all
devices that are connected by the same PCI root complex.

Figure 8 shows a schematic diagram of one our nodes, where all devices connected by the same PCI
root complex are encapsulated in a dotted box. We have tried to maximize the number of GPUs
within the root complex for faster communication between GPUs using GPUDirect. This allows us
to use an efficient communication mechanism to transfer gradient matrices between GPUs.
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All the nodes in our cluster are connected through Fourteen Data Rate (FDR) Infiniband which is
primarily used for gradient transfer during back-propagation.

A.2 GPU Implementation of CTC Loss Function

The CTC loss function that we use to train our models has two passes: forward and backward, and
the gradient computation involves element-wise addition of two matrices, α and β, generated during
the forward and backward passes respectively. Finally, we sum the gradients using the character in
the utterance label as the key, to generate one gradient per character. These gradients are then back-
propagated through the network. The input to the CTC loss function are probabilities calculated by
the softmax function which can be very small, so we compute in log probability space for better
numerical stability.

The forward pass of the CTC algorithm calculates the α matrix, which has S rows and T columns,
where S = 2(L + 1). The variable L is the number of characters in the label and T is the number
of time-steps in the utterance. Our CPU-based implementation of the CTC algorithm assigns one
thread to each utterance label in a minibatch, performing the CTC calculation for the utterances in
parallel. Each thread calculates the relevant entries of the matrix sequentially. This is inefficient for
two reasons.

Firstly, since the remainder of our network is computed on the GPU, the output of the softmax
function has to be copied to the CPU for CTC calculation. The gradient matrices from the CTC
function then has to be copied back to the GPU for backpropagation. For languages like Mandarin
with large character sets, these matrices have hundreds of millions of entries, making this copy
expensive. Furthermore, we need as much interconnect bandwidth as possible for synchronizing the
gradient updates with data parallelism, so this copy incurs a substantial opportunity cost.

Secondly, although entries in each column of the α matrix can be computed in parallel, the number
of entries to calculate in each column depends both on the column and the number of repeated
characters in the utterance label. Due to this complexity, the CPU implementation does not use
SIMD parallelism optimally, making the computation inefficient.

We wrote a GPU-based implementation of CTC in order to overcome these two problems. The key
insight behind our implementation is that we can compute all elements in each column of the α
matrix, rather than just the valid entries. If we do so, Figure 9 shows that invalid elements either
contain a finite garbage value (G), or −∞ (I), when we use a special summation function that adds
probabilities in log space that discards inputs that are −∞. This summation is shown in Figure 9
where arrows incident on a circle are inputs and the result is stored in the circle. However, when we
compute the final gradient by element-wise summing α and β, all finite garbage values will be added
with a corresponding−∞ value from the other matrix, which results in−∞, effectively ignoring the
garbage value and computing the correct result. One important observation is that this element-wise
sum of α and β is a simple sum and does not use our summation function.

To compute the gradient, we take each column of the matrix generated from element-wise addition
of α and β matrices, and do a key-value reduction using the character as key, using the ModernGPU
library [5]. This means elements of the column corresponding to the same character will sum up
their values. In the example shown in Figure 9, the blank character, B, is the only repeated character
and at some columns, say for t = 1 of t = 2, both valid elements (gray) and −∞ correspond to
it. Since our summation function in log space effectively ignores the −∞ elements, only the valid
elements are combined in the reduction.

In our GPU implementation, we map each utterance in the minibatch to a CUDA thread block.
Since there are no dependencies between the elements of a column, all of them can be computed in
parallel by the threads in a threadblock. There are dependencies between columns, since the column
corresponding to time-step t+ 1 cannot be computed before the column corresponding to time-step
t. The reverse happens when computing the β matrix, when column corresponding to time-step
t cannot be computed before the column corresponding to time-step t + 1. Thus, in both cases,
columns are processed sequentially by the thread block.

Mapping the forward and backward passes to corresponding CUDA kernels is straightforward since
there are no data dependencies between elements of a column. The kernel that does the backward
pass also computes the gradient. However, since the gradients must be summed up based on the label
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Figure 9: Forward and backward pass for GPU implementation of CTC. Gray circles contain valid values,
circle with I contain−∞ and circle with G contain garbage values that are finite. B stand for the blank character
that the CTC algorithm adds to the input utterance label. Column labels on top show different time-steps going
from 1 to T.

values, with each character as key, we must deal with data dependencies due to repeated characters
in an utterance label. For languages with small character sets like English, this happens with high
probability. Even if there are no repeated characters, the CTC algorithm adds L+1 blank characters
to the utterance label. We solve this problem by performing a key-value sort, where the keys are the
characters in the utterance label, and the values are the indices of each character in the utterance.
After sorting, all occurrences of a given character are arranged in contiguous segments. We only
need to do the sort once for each utterance. The indices generated by the sort are then used to
sequentially sum up the gradients for each character. This sum is done once per column and in
parallel over all characters in the utterance. Amortizing the cost of key-value sort over T columns is
a key insight that makes the gradient calculation fast.

Our GPU implementation uses fast shared memory and registers to achieve high performance when
performing this task. Both forward and backward kernels store the α matrix in shared memory.
Since shared memory is a limited resource, it is not possible to store the entire β matrix. However,
as we go backward in time, we only need to keep one column of the β matrix as we compute the
gradient, adding element-wise the column of the β matrix with the corresponding column of the
α matrix. Due to on-chip memory space constraints, we read the output of the softmax function
directly from off-chip global memory.

Due to inaccuracies in floating-point arithmetic, especially in transcendental functions, our GPU and
CPU implementation are not bit-wise identical. This is not an impediment in practice, since both
implementations train models equally well when coupled with the technique of sorting utterances
by length mentioned in Section 3.3.
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