LeetCode Unique Paths2

Description

Follow up for “Unique Paths”:

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

The original problem is here.

The original code is here.

My Solution

I solve this problem in C++, as below:

/*
*Unique Paths 2
*Author: shuaijiang
*Email: zhaoshuaijiang8@gmail.com
*/
#include<iostream>
#include<stdlib.h>
using namespace std;

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int matrix[100][100];
        int rowSize=obstacleGrid.size();
        if(rowSize<=0)
            return 0;
        vector<int>oneRow = obstacleGrid[0];
        int colSize = oneRow.size();
        if(obstacleGrid[0][0]==0)
            matrix[0][0] = 1;
        else
            matrix[0][0] = 0;
        for(int i=1;i<colSize;i++){
            if(obstacleGrid[0][i]==1)
                matrix[0][i] = 0;
            else
                matrix[0][i] = matrix[0][i-1];
        }
        for(int j=1;j<rowSize;j++){
            if(obstacleGrid[j][0]==1)
                matrix[j][0] = 0;
            else
                matrix[j][0] = matrix[j-1][0];
        }
        
        for(int i=1;i<rowSize;i++){
            for(int j=1;j<colSize;j++){
                if(obstacleGrid[i][j]==1)
                    matrix[i][j] = 0;
                else
                    matrix[i][j] = matrix[i-1][j] + matrix[i][j-1];
            }
        }
        return matrix[rowSize-1][colSize-1];
    }
};

Note

Dynamic programming is used. The number of paths to get (i,j) in grid is equal to the sum of matrix(i,j-1) and matrix(i-1,j). However, if the grid(i,j) is equal to 1, set matrix(i,j) = 0.


LeetCode Unique Paths2
http://zhaoshuaijiang.com/2015/07/12/leetcode_unique_paths2/
作者
shuaijiang
发布于
2015年7月12日
许可协议