LeeCcode: LRU Cache
Description
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
The original problem is here.
The original code is here.
My Solution
I solve this problem in C++, as below:
/*
*LRU Cache
*Author: shuaijiang
*Email: zhaoshuaijiang8@gmail.com
*/
#include<iostream>
#include<stack>
#include<stdlib.h>
using namespace std;
class LRUCache{
public:
LRUCache(int capacity) {
this->capacity = capacity;
}
int get(int key) {
if(cacheMap.find(key) == cacheMap.end())
return -1;
cacheList.splice(cacheList.begin(), cacheList, cacheMap[key]);
cacheMap[key] = cacheList.begin();
return cacheMap[key]->value;
}
void set(int key, int value) {
if(cacheMap.find(key) == cacheMap.end()){
if(capacity == cacheList.size()){
cacheMap.erase(cacheList.back().key);
cacheList.pop_back();
}
CacheNode node(key,value);
cacheList.push_front(node);
cacheMap[key] = cacheList.begin();
}
else{
cacheList.splice(cacheList.begin(), cacheList, cacheMap[key]);
cacheMap[key] = cacheList.begin();
cacheMap[key]->value = value;
}
}
private:
struct CacheNode{
int key;
int value;
CacheNode(int k, int v):key(k), value(v){}
};
int capacity;
list<CacheNode> cacheList;
map<int, list<CacheNode>::iterator> cacheMap;
};
Note
To solve the problem, a bidirector list and a hashmap are needed. For every operation, put the visited node to the head of the list.
LeeCcode: LRU Cache
http://zhaoshuaijiang.com/2015/08/13/leetcode_lru_cache/