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Foreword

This is the first book on automatic speech recognition (ASR) that is focused on the
deep learning approach, and in particular, deep neural network (DNN) technology.
The landmark book represents a big milestone in the journey of the DNN tech-
nology, which has achieved overwhelming successes in ASR over the past few
years. Following the authors’ recent book on “Deep Learning: Methods and
Applications”, this new book digs deeply and exclusively into ASR technology and
applications, which were only relatively lightly covered in the previous book in
parallel with numerous other applications of deep learning. Importantly, the
background material of ASR and technical detail of DNNs including rigorous
mathematical descriptions and software implementation are provided in this book,
invaluable for ASR experts as well as advanced students.

One unique aspect of this book is to broaden the view of deep learning from
DNNs, as commonly adopted in ASR by now, to encompass also deep generative
models that have advantages of naturally embedding domain knowledge and
problem constraints. The background material did justice to the incredible richness
of deep and dynamic generative models of speech developed by ASR researchers
since early 90’s, yet without losing sight of the unifying principles with respect to
the recent rapid development of deep discriminative models of DNNs. Compre-
hensive comparisons of the relative strengths of these two very different types of
deep models using the example of recurrent neural nets versus hidden dynamic
models are particularly insightful, opening an exciting and promising direction for
new development of deep learning in ASR as well as in other signal and infor-
mation processing applications. From the historical perspective, four generations of
ASR technology have been recently analyzed. The 4th Generation technology is
really embodied in deep learning elaborated in this book, especially when DNNs
are seamlessly integrated with deep generative models that would enable extended
knowledge processing in a most natural fashion.

All in all, this beautifully produced book is likely to become a definitive ref-
erence for ASR practitioners in the deep learning era of 4th generation ASR. The
book masterfully covers the basic concepts required to understand the ASR field as
a whole, and it also details in depth the powerful deep learning methods that have
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shattered the field in 2 recent years. The readers of this book will become articulate
in the new state-of-the-art of ASR established by the DNN technology, and be
poised to build new ASR systems to match or exceed human performance.

By Sadaoki Furui, President of Toyota Technological Institute at Chicago, and
Professor at the Tokyo Institute of Technology.
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Preface

Automatic Speech Recognition (ASR), which is aimed to enable natural human–
machine interaction, has been an intensive research area for decades. Many core
technologies, such as Gaussian mixture models (GMMs), hidden Markov models
(HMMs), mel-frequency cepstral coefficients (MFCCs) and their derivatives, n-
gram language models (LMs), discriminative training, and various adaptation
techniques have been developed along the way, mostly prior to the new millenium.
These techniques greatly advanced the state of the art in ASR and in its related
fields. Compared to these earlier achievements, the advancement in the research and
application of ASR in the decade before 2010 was relatively slow and less exciting,
although important techniques such as GMM–HMM sequence discriminative
training were made to work well in practical systems during this period.

In the past several years, however, we have observed a new surge of interest in
ASR. In our opinion, this change was led by the increased demands on ASR in
mobile devices and the success of new speech applications in the mobile world such
as voice search (VS), short message dictation (SMD), and virtual speech assistants
(e.g., Apple’s Siri, Google Now, and Microsoft’s Cortana). Equally important is the
development of the deep learning techniques in large vocabulary continuous speech
recognition (LVCSR) powered by big data and significantly increased computing
ability. A combination of a set of deep learning techniques has led to more than
1/3 error rate reduction over the conventional state-of-the-art GMM–HMM frame-
work on many real-world LVCSR tasks and helped to pass the adoption threshold for
many real-world users. For example, the word accuracy in English or the character
accuracy in Chinese in most SMD systems now exceeds 90 % and even 95 % on
some systems.

Given the recent surge of interest in ASR in both industry and academia we, as
researchers who have actively participated in and closely witnessed many of the
recent exciting deep learning technology development, believe the time is ripe to
write a book to summarize the advancements in the ASR field, especially those
during the past several years.
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Along with the development of the field over the past two decades or so, we
have seen a number of useful books on ASR and on machine learning related to
ASR, some of which are listed here:

• Deep Learning: Methods and Applications, by Li Deng and Dong Yu (June
2014)

• Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods,
by Joseph Keshet, Samy Bengio (January 2009)

• Speech Recognition Over Digital Channels: Robustness and Standards, by
Antonio Peinado and Jose Segura (September 2006)

• Pattern Recognition in Speech and Language Processing, by Wu Chou and
Biing-Hwang Juang (February 2003)

• Speech Processing—A Dynamic and Optimization-Oriented Approach, by Li
Deng and Doug O’Shaughnessy (June 2003)

• Spoken Language Processing: A Guide to Theory, Algorithm and System
Development, by Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon (April
2001)

• Digital Speech Processing: Synthesis, and Recognition, Second Edition, by
Sadaoki Furui (June 2001)

• Speech Communications: Human and Machine, Second Edition, by Douglas
O’Shaughnessy (June 2000)

• Speech and Language Processing—An Introduction to Natural Language Pro-
cessing, Computational Linguistics, and Speech Recognition, by Daniel Jurafsky
and James Martin (April 2000)

• Speech and Audio Signal Processing, by Ben Gold and Nelson Morgan (April
2000)

• Statistical Methods for Speech Recognition, by Fred Jelinek (June 1997)
• Fundamentals of Speech Recognition, by Lawrence Rabiner and Biing-Hwang
Juang (April 1993)

• Acoustical and Environmental Robustness in Automatic Speech Recognition, by
Alex Acero (November 1992).

All these books, however, were either published before the rise of deep learning
for ASR in 2009 or, as our 2014 overview book, were focused on less technical
aspects of deep learning for ASR than is desired. These earlier books did not
include the new deep learning techniques developed after 2010 with sufficient
technical and mathematical detail as would be demanded by ASR or deep learning
specialists. Different from the above books and in addition to some necessary
background material, our current book is mainly a collation of research in most
recent advances in deep learning or discriminative and hierarchical models, as
applied specific to the field of ASR. Our new book presents insights and theoretical
foundation of a series of deep learning models such as deep neural network (DNN),
restricted Boltzmann machine (RBM), denoising autoencoder, deep belief network,
recurrent neural network (RNN) and long short-term memory (LSTM) RNN, and
their application in ASR through a variety of techniques including the DNN-HMM
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hybrid system, the tandem and bottleneck systems, multi-task and transfer learning,
sequence-discriminative training, and DNN adaptation. The book further discusses
practical considerations, tricks, setups, and speedups on applying the deep learning
models and related techniques in building real-world real-time ASR systems. To set
the background, our book also includes two chapters that introduce GMMs and
HMMs with their variants. However, we omit details of the GMM–HMM tech-
niques that do not directly relate to the theme of the book—the hierarchical
modeling or deep learning approach. Our book is thus complementary to, instead of
replacement of, the published books listed above on many of similar topics. We
believe this book will be of interest to advanced graduate students, researchers,
practitioners, engineers, and scientists in speech processing and machine learning
fields. We hope our book not only provides reference to many of the techniques
used in the filed but also ignites new ideas to further advance the field.

During the preparation of the book, we have received encouragement and help
from Alex Acero, Geoffrey Zweig, Qiang Huo, Frank Seide, Jasha Droppo, Mike
Seltzer, and Chin-Hui Lee. We also thank Springer editors, Agata Oelschlaeger and
Kiruthika Poomalai, for their kind and timely help in polishing up the book and for
handling its publication.

Seattle, USA, July 2014 Dong Yu
Li Deng
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Chapter 1
Introduction

Abstract Automatic speech recognition (ASR) is an important technology to enable
and improve the human–human and human–computer interactions. In this chapter,
we introduce the main application areas of ASR systems, describe their basic
architecture, and then introduce the organization of the book.

1.1 Automatic Speech Recognition: A Bridge for Better
Communication

Automatic speech recognition (ASR) has been an active research area for over five
decades. It has always been considered as an important bridge in fostering better
human–human and human–machine communication. In the past, however, speech
never actually became an important modality in the human–machine communica-
tion. This is partly because the technology at that time was not good enough to
pass the usable bar for most real world users under most real usage conditions, and
partly because in many situations alternative communication modalities such as key-
board and mouse significantly outperform speech in the communication efficiency,
restriction, and accuracy.

In the recent years, speech technology started to change the way we live and work
and became one of the primary means for humans to interact with some devices. This
trend started due to the progress made in several key areas. First, Moor’s law continues
to function. The computational power available today, through multi-core processors,
general purpose graphical processing units (GPGPUs), and CPU/GPU clusters, is
several orders of magnitude more than that available just a decade ago. This makes
training of more powerful yet complex models possible. These more computation-
demanding models, which are the topic of this book, significantly reduced the error
rates of the ASR systems. Second, we can now access to much more data than before,
thanks to the continued advance of the Internet and the cloud computing. By build-
ing models on big data collected from the real usage scenarios, we can eliminate
many model assumptions made before and make systems more robust. Third, mobile
devices, wearable devices, intelligent living room devices, and in-vehicle infotain-
ment systems became popular. On these devices and systems, alternative interaction
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Speech Recognition
Machine 

Translation
Text To Speech

Fig. 1.1 Components in a typical speech to speech translation system

modalities such as keyboard and mouse are less convenient than that in the personal
computers. Speech, which is the natural way of human–human communication and a
skill that majority of people already have, thus becomes a more favorable interaction
modality on these devices and systems.

In the recent years, there are many applications in which speech technology
plays an important role. These applications can be classified as applications that
help improve human–human communication (HHC) and that help improve human–
machine communication (HMC).

1.1.1 Human–Human Communication

Speech technology can remove barriers between human–human interactions. In the
past, people who speak different languages need a human interpreter to be able to talk
to each other. This sets a significant limitation on who people can communicate with
and when the communication can happen. For example, people who cannot speak
Chinese often find it difficult to travel in China alone. This barrier, however, can
be alleviated by speech-to-speech (s2s) translation systems, of which a recent demo
from Microsoft Research can be found at [2]. Besides being used by travelers, s2s
translation systems can also be integrated into communication tools such as Skype to
allow people who speak different languages to freely communicate with each other
remotely. Figure1.1 illustrates the key components in a typical s2s translation system
in which speech recognition is at the first stage of the pipeline.

Speech technology can also help HHC in other ways. For example, in the unified
messaging systems, the speech transcription sub-system can be used to convert voice
messages left by a caller into text. The transcribed text can then be easily sent to the
recipient through emails, instant messaging, or short message, and conveniently
consumed by the recipient. In another example, the ASR technology can be used to
dictate short messages to reduce the effort needed for the users to send short messages
to their friends. The speech recognition technology can also be used to recognize
and index speeches and lectures so that users can easily find the information that are
interesting to them.

1.1.2 Human–Machine Communication

Speech technologies can also greatly improve HMC. The most popular applications
in this category include voice search, personal digital assistant, gaming, living room
interaction systems, and in-vehicle infotainment systems:
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• Voice search (VS) [24–26] applications allow users to search for information such
as restaurants, driving directions, and product reviews directly through speech.
They significantly reduce effort needed for users to input the search queries. Nowa-
days, voice search applications have been very popular in mobile devices such as
iPhone, Windows Phone, and Android Phone.

• Personal digital assistance (PDA) has been prototyped for a decade. However,
it became popular only recently after Apple released the Siri system in iPhone.
Since then, many other companies released similar products. PDA knows the
information stored in your mobile devices, some world knowledge, and users’
interaction history with the system, and thus can serve users better. The example
tasks that a PDA can do include dialing a phone number, scheduling a meeting,
asking for an answer, and searching for a music, all by directly issuing a voice
command.

• The gaming experience can be greatly improved if games are integrated with
speech technology. For example, in some of Microsoft’s Xbox games, players can
talk to the cartoon characters to ask for information or issue commands.

• The living room interaction systems and in-vehicle infotainment systems [23]
are very similar in functionality. These systems allow users to interact with them
through speech so that users can play music, ask for information, or control the
systems. However, since these systems are used under different conditions, they
encounter different design challenges.

All the applications and systems discussed in this sub-section are examples of spoken
language systems [11]. As shown in Fig. 1.2, spoken language systems often include
one or more of four major components: a speech recognition component that converts
speech into text; a spoken language understanding component that finds semantic
information in the spoken words; a text-to-speech component that conveys spoken
information; and a dialog manager that communicates with applications and other
three components. All these components are important to build a successful spoken
language system. In this book, we only focus on the ASR component.

Speech Recognition
Spoken Language 

Understanding
Text To Speech

Dialog Manager

Fig. 1.2 Components in a typical spoken language system
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1.2 Basic Architecture of ASR Systems

The typical architecture of an ASR system is illustrated in Fig. 1.3. As indicated in
the figure, the ASR system has four main components: Signal processing and feature
extraction, acoustic model (AM), language model (LM), and hypothesis search.

The signal processing and feature extraction component takes as input the audio
signal, enhances the speech by removing noises and channel distortions, converts the
signal from time-domain to frequency-domain, and extracts salient feature vectors
that are suitable for the following acoustic models. The acoustic model integrates
knowledge about acoustics and phonetics, takes as input the features generated from
the feature extraction component, and generates an AM score for the variable-length
feature sequence. The language model estimates the probability of a hypothesized
word sequence, or LM score, by learning the correlation between words from a (typ-
ically text) training corpora. The LM score often can be estimated more accurately
if the prior knowledge about the domain or task is known. The hypothesis search
component combines AM and LM scores given the feature vector sequence and the
hypothesized word sequence, and outputs the word sequence with the highest score
as the recognition result. In this book, we focus on the AM component.

The two main issues to deal with by the AM component are the variable-length
feature vectors and variability in the audio signals. The variable length feature prob-
lem is often addressed by techniques such as dynamic time warping (DTW) and
hidden Markov model (HMM) [18], which we will describe in Chap.3. The variabil-
ity in the audio signals is caused by complicated interaction of speaker characteristics
(e.g., gender, illness, or stress), speech style and rate, environment noise, side talks,
channel distortion (e.g., microphone difference), dialect differences, and nonnative
accents. A successful speech recognition system must contend with all of these
acoustic variability.

As we move from the constrained tasks to the real world applications described
in Sect. 1.1, additional challenges incur. As illustrated in Fig. 1.4, a practical ASR
system, nowadays, needs to deal with huge (millions) vocabulary, free-style conver-
sation, noisy far field spontaneous speech and mixed languages.

Signal Processing &  
Feature Extraction

Acoustic Model Language Model

Feature

Hypothesis Search

Audio Signal

AM Score LM Score

Recognition Result

Fig. 1.3 Architecture of ASR systems
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Fig. 1.4 The ASR problems we work on today (right column) are much more difficult than what
we have worked on in the past due to the demand from the real world applications

In the past, the dominant state-of-the-art ASR system typically uses the mel-
frequency cepstral coefficient (MFCC) [4] or relative spectral transform-perceptual
linear prediction (RASTA-PLP) [7] as the feature vectors and the Gaussian mixture
model (GMM)-HMM as the acoustic model. In the 1990s, these GMM-HMM AMs
are trained using the maximum likelihood (ML) training criterion. In 2000s, the
sequence discriminative training algorithms such as minimum classification error
(MCE) [13] and minimum phone error (MPE) [16] were proposed and further
improved the ASR accuracy.

In recent years, discriminative hierarchical models such as deep neural networks
(DNNs) [3, 9] became feasible and significantly reduced error rates, thanks to the
continued improvements in the computation power, availability of large training
set, and better understanding of these models. For example, the context-dependent
(CD)-DNN-HMM achieved one third of error rate reduction on the Switchboard
conversational transcription task over the conventional GMM-HMM systems trained
with sequence discriminative criteria [22].

In this book, we describe the new development of these discriminative hierarchical
models, including DNN, convolutional neural network (CNN), and recurrent neural
network (RNN). We discuss the theoretical foundations of these models as well as
the practical tricks that make the system work. Since we are most familiar with our
own work, the book will mainly focus on our own work, but will cover related work
conducted by other researchers when appropriate.

1.3 Book Organization

We organize the book into five parts. We devote Part I to the conventional GMM-
HMM systems as well as the related mathematical models and variants, extracting
the content from the established books of [5, 10, 19] and the tutorial materials
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of [12, 17]. Part II introduces DNN, its initialization and training algorithms. Part
III discusses the DNN-HMM hybrid system for speech recognition, the tricks to
improve the training and evaluation speed of DNNs, and the sequence-discriminative
training algorithms. Part IV describes DNNs from the joint representation learning
and model optimization point of view. Based on this view, we introduce the tandem
system for speech recognition and the adaptation techniques for DNNs. Part V covers
the advanced models such as multilingual DNN, recurrent neural networks, and
computational networks. We summarize the book in Chap.15 with an outline of the
key milestones in the history of developing deep learning-based ASR systems and
provide some thoughts we have in the future directions of ASR research.

Compared with our recent book of [6], the current book goes into much greater
technical depth and is confined exclusively within speech recognition without
spreading into other deep learning applications.

1.3.1 Part I: Conventional Acoustic Models

Chapters2 and 3 provide you with a basic theoretic foundation on the conventional
GMM-HMM acoustic model. These chapters prepare you to understand the discrim-
inative hierarchical models we will introduce in the rest of the book.

Chapter2 discusses Gaussian mixture models, the principle of maximum
likelihood, and the expectation-maximization [15] training algorithm. Chapter3
introduces hidden Markov model, the most prominent technique used in modern
speech recognition systems. It explains how HMMs handle the variable-length signal
problem, and describe the forward-backward training algorithm and the Viterbi
decoding algorithm. GMM-HMM forms the foundation of the modern speech recog-
nition systems before the prevailing of the CD-DNN-HMM systems we focus on in
this book.

1.3.2 Part II: Deep Neural Networks

Chapters4 and 5 provide you with an in-depth look at deep neural networks. We high-
light techniques that are proven to work well in building real systems and explain
in details how and why these techniques work from both theoretic and practical
perspectives.

Chapter4 introduces deep neural networks, the famous back-propagation
algorithm [14, 20], and various practical tricks to train a DNN effectively and
efficiently. Chapter5 discusses advanced DNN initialization techniques, including
the generative pretraining and discriminative pretraining [21]. We focus on the
restricted Boltzmann machine (RBM) [8], noisy auto-encoder [1], and the relation-
ship between two.

http://dx.doi.org/10.1007/978-1-4471-5779-3_15
http://dx.doi.org/10.1007/978-1-4471-5779-3_2
http://dx.doi.org/10.1007/978-1-4471-5779-3_3
http://dx.doi.org/10.1007/978-1-4471-5779-3_2
http://dx.doi.org/10.1007/978-1-4471-5779-3_3
http://dx.doi.org/10.1007/978-1-4471-5779-3_4
http://dx.doi.org/10.1007/978-1-4471-5779-3_5
http://dx.doi.org/10.1007/978-1-4471-5779-3_4
http://dx.doi.org/10.1007/978-1-4471-5779-3_5
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1.3.3 Part III: DNN-HMM Hybrid Systems for ASR

In Chaps. 6–8, we follow the same spirit to discuss proven techniques in integrating
DNNs with HMMs for speech recognition.

Chapter6 describes the DNN-HMM hybrid model [3], in which the HMM is used
to model the sequential property of the speech signal and DNN is used to model the
emission probabilities in the HMM. Chapter7 discusses the practical implementa-
tion tricks that improve the speed of the training and decoding of the DNN-HMM
systems. Chapter8 discusses the sequence-discriminative training algorithms that
further improve the recognition accuracy of DNN-HMM hybrid systems.

1.3.4 Part IV: Representation Learning in Deep Neural Networks

In Chaps. 9–11 we look at DNNs from a different angle and discuss how this new
angle suggests other approaches that DNN can be used for speech recognition.

Chapter9 describes the joint feature learning and model optimization point of
view of DNNs. We argue that the DNN can be separated at arbitrary hidden layer
and consider all layers below it as the feature transformation and all layers above
it as the classification model. Chapter10 introduces the tandem architecture and
bottleneck systems, in which DNNs are served as a separate feature extractors that
fed into the conventional GMM-HMM. Chapter 11 shows different techniques with
which DNNs can be effectively adapted.

1.3.5 Part V: Advanced Deep Models

From Chaps. 12 to 14 we introduce several advanced deep models. In Chap. 12
we describe DNN-based multitask and transfer learning with which the feature
representations are shared and transferred across related tasks. We will use mul-
tilingual and crosslingual speech recognition as the main example, which uses a
shared-hidden-layer DNN architecture, to demonstrate these techniques. In Chap. 13
we illustrate recurrent neural network, including long short-term memory neural
networks, for speech recognition. In Chap. 14 we introduce computational net-
work, a unified framework for describing arbitrary learning machines, such as deep
neural networks (DNNs), computational neural networks (CNNs), recurrent neural
networks (RNNs) including the version with long short-term memory (LSTM), logis-
tic regression, and maximum entropy model, which can be illustrated as a series of
computational steps.

http://dx.doi.org/10.1007/978-1-4471-5779-3_6
http://dx.doi.org/10.1007/978-1-4471-5779-3_8
http://dx.doi.org/10.1007/978-1-4471-5779-3_6
http://dx.doi.org/10.1007/978-1-4471-5779-3_7
http://dx.doi.org/10.1007/978-1-4471-5779-3_8
http://dx.doi.org/10.1007/978-1-4471-5779-3_9
http://dx.doi.org/10.1007/978-1-4471-5779-3_11
http://dx.doi.org/10.1007/978-1-4471-5779-3_9
http://dx.doi.org/10.1007/978-1-4471-5779-3_10
http://dx.doi.org/10.1007/978-1-4471-5779-3_11
http://dx.doi.org/10.1007/978-1-4471-5779-3_12
http://dx.doi.org/10.1007/978-1-4471-5779-3_14
http://dx.doi.org/10.1007/978-1-4471-5779-3_12
http://dx.doi.org/10.1007/978-1-4471-5779-3_13
http://dx.doi.org/10.1007/978-1-4471-5779-3_14


8 1 Introduction

References

1. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep
networks. In: Proceedings of the Neural Information Processing Systems (NIPS), pp. 153–160
(2006)

2. Clayton, S.: Microsoft research shows a promising new breakthrough in speech trans-
lation technology. http://blogs.technet.com/b/next/archive/2012/11/08/microsoft-research-
shows-a-promising-new-breakthrough-in-speech-translation-technology.aspx (2012)

3. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks
for large-vocabulary speech recognition. IEEE Trans. Audio, Speech Lang. Process. 20(1),
30–42 (2012)

4. Davis, S., Mermelstein, P.: Comparison of parametric representations for monosyllabic word
recognition in continuously spoken sentences. IEEE Trans. Acoust. Speech Signal Process.
28(4), 357–366 (1980)

5. Deng, L., O’Shaughnessy, D.: Speech Processing—A Dynamic and Optimization-Oriented
Approach. Marcel Dekker Inc, New York (2003)

6. Deng, L., Yu, D.: Deep Learning: Methods and Applications. NOW Publishers, Delft (2014)
7. Hermansky, H.: Perceptual linear predictive (PLP) analysis of speech. J. Acoust. Soc. Am. 87,

1738 (1990)
8. Hinton, G.: A practical guide to training restricted Boltzmann machines. Technical Report

UTML TR 2010-003, University of Toronto (2010)
9. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke,

V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech
recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

10. Huang, X., Acero, A., Hon, H.W.: Spoken Language Processing: A Guide to Theory, Algorithm,
and System Development. Prentice Hall, Englewood Cliffs (2001)

11. Huang, X., Acero, A., Hon, H.W., et al.: Spoken Language Processing, vol. 18. Prentice Hall,
Englewood Cliffs (2001)

12. Huang, X., Deng, L.: An overview of modern speech recognition. In: Indurkhya, N., Damerau,
F.J. (eds.) Handbook of Natural Language Processing, 2nd edn. CRC Press, Taylor and Francis
Group, Boca Raton (2010). ISBN 978-1420085921

13. Juang, B.H., Hou, W., Lee, C.H.: Minimum classification error rate methods for speech recog-
nition. IEEE Trans. Speech Audio Process. 5(3), 257–265 (1997)

14. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.R.: Efficient backprop. In: Neural Networks: Tricks
of the Trade, pp. 9–50. Springer (1998)

15. Moon, T.K.: The expectation-maximization algorithm. IEEE Signal Process. Mag. 13(6), 47–60
(1996)

16. Povey, D., Woodland, P.C.: Minimum phone error and I-smoothing for improved discrimina-
tive training. In: Proceedings of International Conference on Acoustics, Speech and Signal
Processing (ICASSP), vol. 1, pp. I–105 (2002)

17. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recogni-
tion. Proc. IEEE 77(2), 257–286 (1989)

18. Rabiner, L., Juang, B.H.: An introduction to hidden markov models. IEEE ASSP Mag. 3(1),
4–16 (1986)

19. Rabiner, L., Juang, B.H.: Fundamentals of Speech Recognition. Prentice-Hall, Upper Saddle
River (1993)

20. Rumelhart, D.E., Hintont, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Nature 323(6088), 533–536 (1986)

21. Seide, F., Li, G., Chen, X., Yu, D.: Feature engineering in context-dependent deep neural net-
works for conversational speech transcription. In: Proceedings of IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU), pp. 24–29 (2011)

http://blogs.technet.com/b/next/archive/2012/11/08/microsoft-research-shows-a-promising-new-breakthrough-in-speech-translation-technology.aspx
http://blogs.technet.com/b/next/archive/2012/11/08/microsoft-research-shows-a-promising-new-breakthrough-in-speech-translation-technology.aspx


References 9

22. Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-dependent deep
neural networks. In: Proceedings of Annual Conference of International Speech Communica-
tion Association (INTERSPEECH), pp. 437–440 (2011)

23. Seltzer, M.L., Ju, Y.C., Tashev, I., Wang, Y.Y., Yu, D.: In-car media search. IEEE Signal Process.
Mag. 28(4), 50–60 (2011)

24. Wang, Y.Y., Yu, D., Ju, Y.C., Acero, A.: An introduction to voice search. IEEE Signal Process.
Mag. 25(3), 28–38 (2008)

25. Yu, D., Ju, Y.C., Wang, Y.Y., Zweig, G., Acero, A.: Automated directory assistance system-from
theory to practice. In: Proceedings of Annual Conference of International Speech Communi-
cation Association (INTERSPEECH), pp. 2709–2712 (2007)

26. Zweig, G., Chang, S.: Personalizing model [M] for voice-search. In: Proceedings of
Annual Conference of International Speech Communication Association (INTERSPEECH),
pp. 609–612 (2011)



Part I
Conventional Acoustic Models



Chapter 2
Gaussian Mixture Models

Abstract In this chapter we first introduce the basic concepts of random variables
and the associated distributions. These concepts are then applied to Gaussian random
variables and mixture-of-Gaussian random variables. Both scalar and vector-valued
cases are discussed and the probability density functions for these random variables
are given with their parameters specified. This introduction leads to the Gaussian
mixture model (GMM) when the distribution of mixture-of-Gaussian random vari-
ables is used to fit the real-world data such as speech features. The GMM as a
statistical model for Fourier-spectrum-based speech features plays an important role
in acoustic modeling of conventional speech recognition systems. We discuss some
key advantages of GMMs in acoustic modeling, among which is the easy way of
using them to fit the data of a wide range of speech features using the EM algorithm.
We describe the principle of maximum likelihood and the related EM algorithm for
parameter estimation of the GMM in some detail as it is still a widely used method
in speech recognition. We finally discuss a serious weakness of using GMMs in
acoustic modeling for speech recognition, motivating new models and methods that
form the bulk part of this book.

2.1 Random Variables

The most basic concept in probability theory and in statistics is the random variable.
A scalar random variable is a real-valued function or variable, which takes its value
based on the outcome of a random experiment. A vector-valued random variable is
a set of scalar random variables, which may either be related to or be independent
of each other. Since the experiment is random, the value assumed by the random
variable is random as well. A random variable can be understood as a mapping from
a random experiment to a variable. Depending on the nature of the experiment and
of the design of the mapping, a random variable can take either discrete values,
continuous values, or a mix of discrete and continuous values. We, hence, see the
names of discrete random variable, continuous random variable, or hybrid random
variable. All possible values, which may be assumed by a random variable, are
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sometimes called its domain. In this as well as a few other later chapters, we use
the same notations to describe random variables and other concepts as those adopted
in [16].

The fundamental characterization of a continuous-valued random variable, x , is
its distribution or the probability density function (PDF), denoted generally by p(x).
The PDF for a continuous random variable at x = a is defined by

p(a)
.= lim

Δa→0

P(a − Δa < x ≤ a)

Δa
≥ 0 (2.1)

where P(·) denotes the probability of the event.
The cumulative distribution function of a continuous random variable x evaluated

at x = a is defined by

P(a)
.= P(x ≤ a) =

a∫

−∞
p(x)dx . (2.2)

A PDF has to satisfy the property of normalization:

P(x ≤ ∞) =
∞∫

−∞
p(x)dx = 1. (2.3)

If the normalization property is not held, we sometimes call the PDF an improper
density or unnormalized distribution.

For a continuous random vector x = (x1, x2, . . . , xD)T ∈ RD, we can similarly
define their joint PDF of p(x1, x2, . . . , xD). Further, a marginal PDF for each of the
random variable xi in the random vector x is defined by

p(xi )
.=

∫ ∫

all x j : x j �=xi

. . .

∫
p(x1, . . . , xD) dx1 . . . dxi−1dxi+1 . . . dxD . (2.4)

It has the same properties as the PDF for a scalar random variable.

2.2 Gaussian and Gaussian-Mixture Random Variables

A scalar continuous random variable x is normally or Gaussian distributed if its
PDF is
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p(x) = 1

(2π)1/2σ
exp

[
−1

2

(
x − μ

σ

)2
]

.= N (x;μ, σ 2),

(−∞ < x < ∞; σ > 0) (2.5)

An equivalent notation for the above is

x ∼ N (μ, σ 2),

denoting that random variable x obeys a normal distribution with meanμ and variance
σ 2. With the use of the precision parameter r, a Gaussian PDF can also be written as

p(x) =
√

r

2π
exp

[
− r

2
(x − μ)2

]
. (2.6)

It is a simple exercise to show that for a Gaussian random variable x , E(x) =
μ, var(x) = σ 2 = r−1.

The normal random vector x = (x1, x2, . . . , xD)T, also called multivariate or
vector-valued Gaussian random variable, is defined by the following joint PDF:

p(x) = 1

(2π)D/2|Σ |1/2 exp

[
−1

2
(x − μ)TΣ−1(x − μ)

]
.= N (x;μ,Σ) (2.7)

An equivalent notation is x ∼ N (μ ∈ RD,Σ ∈ RD×D). It is also straight
forward to show that for a multivariate Gaussian random variable, the expectation
and covariance matrix are given by E(x) = μ; E[(x − x)(x − x)T] = Σ .

The Gaussian distribution is commonly used in many engineering and science
disciplines including speech recognition. The popularity arises not only from its
highly desirable computational properties, but also from its ability to approximate
many naturally occurring real-world data, thanks to the law of large numbers.

Let us now move to discuss the Gaussian-mixture random variable with the dis-
tribution called mixture of Gaussians. A scalar continuous random variable x has a
Gaussian-mixture distribution if its PDF is specified by

p(x) =
M∑

m=1

cm

(2π)1/2σm
exp

[
−1

2

(
x − μm

σm

)2
]

(2.8)

=
M∑

m=1

cmN (x;μm, σ 2
m) (−∞ < x < ∞; σm > 0; cm > 0)

where the positive mixture weights sum to unity:
∑M

m=1 cm = 1.
The most obvious property of Gaussian mixture distribution is its multimodal

one (M > 1 in Eq. 2.8), in contrast to the unimodal property of the Gaussian
distribution where M = 1. This makes it possible for a mixture Gaussian distribution
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to adequately describe many types of physical data (including speech data) exhibiting
multimodality poorly suited for a single Gaussian distribution. The multimodality
in data may come from multiple underlying causes each being responsible for one
particular mixture component in the distribution. If such causes are identified, then
the mixture distribution can be decomposed into a set of cause-dependent or context-
dependent component distributions.

It is easy to show that the expectation of a random variable x with the mixture
Gaussian PDF of Eq. 2.8 is E(x) = ∑M

m=1 cmμm . But unlike a (uni-modal) Gaussian
distribution, this simple summary statistic is not very informative unless all the
component means, μm, m = 1, . . . , M , in the Gaussian-mixture distribution are
close to each other.

The multivariate generalization of the mixture Gaussian distribution has the joint
PDF of

p(x) =
M∑

m=1

cm

(2π)D/2|Σm |1/2 exp

[
−1

2
(x − μm)TΣ−1

m (x − μm)

]

=
M∑

m=1

cmN (x;μm,Σm), (cm > 0). (2.9)

The use of this multivariate mixture Gaussian distribution has been one key factor
contributing to improved performance of many speech recognition systems (prior to
the rise of deep learning); e.g., [14, 23, 24, 27]. In most applications, the number of
mixture components, M , is chosen a priori according to the nature of the problem,
although attempts have been made to sidestep such an often difficult problem of
finding the “right” number; e.g., [31].

In using the multivariate mixture Gaussian distribution of Eq. 2.8, if the variable
x’s dimensionality, D, is large (say, 40, for speech recognition problems), then the
use of full (nondiagonal) covariance matrices (Σm) would involve a large number
of parameters (on the order of M × D2). To reduce the number of parameters, one
can opt to use diagonal covariance matrices for Σm . Alternatively, when M is large,
one can also constrain all covariance matrices to be the same; i.e., “tying” Σm for
all mixture components, m. An additional advantage of using diagonal covariance
matrices is significant simplification of computations needed for the applications of
the Gaussian-mixture distributions. Reducing full covariance matrices to diagonal
ones may have seemed to impose uncorrelatedness among data vector components.
This has been misleading, however, since a mixture of Gaussians each with a diagonal
covariance matrix can at least effectively describe the correlations modeled by one
Gaussian with a full covariance matrix.
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2.3 Parameter Estimation

The Gaussian-mixture distributions we just discussed contain a set of parameters. In
the multivariate case of Eq. 2.8, the parameter set consists of Θ = {

cm,μm,Σm
}
.

The parameter estimation problem, also called learning, is to determine the values of
these parameters from a set of data typically assumed to be drawn from the Gaussian-
mixture distribution.

It is common to think of Gaussian mixture modeling and the related parameter
estimation as a missing data problem. To understand this, let us assume that the data
points under consideration have “membership,” or the component of the mixture, in
one of the individual Gaussian distributions we are using to model the data. At the
start, this membership is unknown, or missing. The task of parameter estimation is
to learn appropriate parameters for the distribution, with the connection to the data
points being represented as their membership in the individual Gaussian distributions.

Here, we focus on maximum likelihood methods for parameter estimation of the
Gaussian-mixture distribution, and the expectation maximization (EM) algorithm
in particular. The EM algorithm is the most popular technique used to estimate the
parameters of a mixture given a fixed number of mixture components, and it can
be used to compute the parameters of any parametric mixture distribution. It is an
iterative algorithm with two steps: an expectation or E-step and a maximization or
M-step. We will cover the general statistical formulation of the EM algorithm, based
on [5], in more detail in Chap. 3 on hidden Markov models, and here we only discuss
its practical use for the parameter estimation problem related to the Gaussian mixture
distribution.

The EM algorithm is of particular appeal for the Gaussian mixture distribution
as the main topic of this chapter, where closed-form expressions in the M-step are
available as expressed in the following iterative fashion1:

c( j+1)
m = 1

N

N∑
t=1

h( j)
m (t), (2.10)

μ
( j+1)
m =

∑N
t=1 h( j)

m (t)x (t)

∑N
t=1 h( j)

m (t)
, (2.11)

Σ
( j+1)
m =

∑N
t=1 h( j)

m (t)[x(t) − μ
( j)
m ][x (t) − μ

( j)
m ]T

∑N
t=1 h( j)

m (t)
, (2.12)

where the posterior probabilities (also called the membership responsibilities) com-
puted from the E-step are given by

1 Detailed derivation of these formulae can be found in [1], which we omit here. Related derivations
for similar but more general models can be found in [2, 3, 6, 15, 18].

http://dx.doi.org/10.1007/978-1-4471-5779-3_3
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h( j)
m (t) = c( j)

m N (x(t);μ
( j)
m ,Σ

( j)
m )∑n

i=1 c( j)
i N (x(t);μ

( j)
i ,Σ

( j)
i ).

(2.13)

That is, on the basis of the current (denoted by superscript j above) estimate for the
parameters, the conditional probability for a given observation x(t) being generated
from mixture component m is determined for each data sample point at t = 1, . . . , N ,
where N is the sample size. The parameters are then updated such that the new compo-
nent weights correspond to the average conditional probability and each component
mean and covariance is the component specific weighted average of the mean and
covariance of the entire sample set.

It has been well established that each successive EM iteration will not decrease
the likelihood, a property not shared by most other gradient based maximization
techniques. Further, the EM algorithm naturally embeds within it constraints on the
probability vector, and for sufficiently large sample sizes positive definiteness of the
covariance iterates. This is a key advantage since explicitly constrained methods incur
extra computational costs to check and maintain appropriate values. Theoretically,
the EM algorithm is a first-order one and as such converges slowly to a fixed-point
solution. However, convergence in likelihood is rapid even if convergence in the
parameter values themselves is not. Another disadvantage of the EM algorithm is its
propensity to spuriously identify local maxima and its sensitivity to initial values.
These problems can be addressed by evaluating EM at several initial points in the
parameter space although this may become computationally costly. Another popular
approach to address these issues is to start with one Gaussian component and split
the Gaussian components after each epoch.

In addition to the EM algorithm discussed above for parameter estimation that
is rested on maximum likelihood or data fitting, other types of estimation aimed
to perform discriminative estimation or learning have been developed for Gaussian
or Gaussian mixtures, as special cases of the related but more general statistical
models such as the Gaussian HMM and its Gaussian-mixture counterpart; e.g.,
[22, 25, 26, 33].

2.4 Mixture of Gaussians as a Model for the Distribution of
Speech Features

When speech waveforms are processed into compressed (e.g., by taking logarithm
of) short-time Fourier transform magnitudes or related cepstra, the Gaussian-mixture
distribution discussed above is shown to be quite appropriate to fit such speech
features when the information about the temporal order is discarded. That is, one can
use the Gaussian-mixture distribution as a model to represent frame-based speech
features. We use the Gaussian mixture model (GMM) to refer to the use of the
Gaussian-mixture distribution for representing the data distribution. In this case and
in the remainder of this book, we generally use model or computational model
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to refer to a form of mathematical abstraction of aspects of some realistic physi-
cal process (such as the human speech process), following the guiding principles
detailed in [9]. Such models are established often with necessary simplification and
approximation aimed at mathematical or computational tractability. The tractability
is crucial in making the mathematical abstraction amenable to computer or algorith-
mic implementation for practical engineering applications (such as speech analysis
and recognition).

Both inside and outside the speech recognition domain, the GMM is commonly
used for modeling the data and for statistical classification. GMMs are well known
for their ability to represent arbitrarily complex distributions with multiple modes.
GMM-based classifiers are highly effective with widespread use in speech research,
primarily for speaker recognition, denoising speech features, and speech recognition.
For speaker recognition, the GMM is directly used as a universal background model
(UBM) for the speech feature distribution pooled from all speakers [4, 28, 32, 34]. In
speech feature denoising or noise tracking applications, the GMM is used in a similar
way and as a prior distribution [10–13, 19, 21]. In speech recognition applications,
the GMM is integrated into the doubly stochastic model of HMM as its output
distribution conditioned on a state, a topic which will be discussed in a great detail
in Chap. 3.

When speech sequence information is taken into account, the GMM is no longer
a good model as it contains no sequence information. A class of more general mod-
els, called the hidden Markov models (HMM) to be discussed in Chap. 3, captures
the sequence information. Given a fixed state of the HMM, the GMM remains a
reasonably good model for the PDF of speech feature vectors allocated to the state.

GMMs have several distinct advantages that make them suitable for modeling
the PDFs over speech feature vectors associated with each state of an HMM. With
enough components, they can model PDFs to any required level of accuracy, and
they are easy to fit to data using the EM algorithm described in Sect. 2.3. A huge
amount of research has gone into finding ways of constraining GMMs to increase
their evaluation speed and to optimize the tradeoff between their flexibility and the
amount of training data required to avoid overfitting. This includes the development
of parameter-tied or semi-tied GMMs and subspace GMMs.

Beyond the use of the EM algorithm for parameter estimation of the GMM
parameters, the speech recognition accuracy obtained by a GMM-based system
(which is interfaced with the HMM) has been drastically improved if the GMM
parameters are discriminatively learned after they have been generatively trained by
EM to maximize its probability of generating the observed speech features in the
training data. This is especially true if the discriminative objective function used
for training is closely related to the error rate on phones, words, or sentences. The
accuracy can also be improved by augmenting (or concatenating) the input speech
features with tandem or bottleneck features generated using neural networks, which
we will discuss in a later chapter. GMMs had been very successful in modeling
speech features and in acoustic modeling for speech recognition for many years
(until around year 2010–2011 when deep neural networks were shown to outper-
form the GMMs).

http://dx.doi.org/10.1007/978-1-4471-5779-3_3
http://dx.doi.org/10.1007/978-1-4471-5779-3_3
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Despite all their advantages, GMMs have a serious shortcoming. That is, GMMs
are statistically inefficient for modeling data that lie on or near a nonlinear mani-
fold in the data space. For example, modeling the set of points that lie very close to
the surface of a sphere only requires a few parameters using an appropriate model
class, but it requires a very large number of diagonal Gaussians or a fairly large
number of full-covariance Gaussians. It is well-known that speech is produced
by modulating a relatively small number of parameters of a dynamical system
[7, 8, 17, 20, 29, 30]. This suggests that the true underlying structure of speech
is of a much lower dimension than is immediately apparent in a window that
contains hundreds of coefficients. Therefore, other types of model, which can
capture better properties of speech features, are expected to work better than GMMs
for acoustic modeling of speech. In particular, the new models should more effectively
exploit information embedded in a large window of frames of speech features than
GMMs. We will return to this important problem of characterizing speech features
after discussing a model, the HMM, for characterizing temporal properties of speech
in the next chapter.
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Chapter 3
Hidden Markov Models and the Variants

Abstract This chapter builds upon the reviews in the previous chapter on aspects of
probability theory and statistics, including random variables and Gaussian mixture
models, and extends the reviews to theMarkov chain and the hiddenMarkov sequence
or model (HMM). Central to the HMM is the concept of state, which is itself a
random variable typically taking discrete values. Extending from a Markov chain to
an HMM involves adding uncertainty or a statistical distribution on each of the states
in theMarkov chain. Hence, an HMM is a doubly-stochastic process, or probabilistic
function of a Markov chain. When the state of the Markov sequence or HMM is
confined to be discrete and the distributions associated with the HMM states do not
overlap, we reduce it to aMarkov chain. This chapter covers several key aspects of the
HMM, including its parametric characterization, its simulation by random number
generators, its likelihood evaluation, its parameter estimation via the EM algorithm,
and its state decoding via theViterbi algorithmor a dynamic programming procedure.
We then provide discussions on the use of the HMMas a generative model for speech
feature sequences and its use as the basis for speech recognition. Finally, we discuss
the limitations of theHMM, leading to its various extended versions, where each state
is made associated with a dynamic system or a hidden time-varying trajectory instead
of with a temporally independent stationary distribution such as a Gaussian mixture.
These variants of the HMMwith state-conditioned dynamic systems expressed in the
state-space formulation are introduced as a generative counterpart of the recurrent
neural networks to be described in detail in Chap.13.

3.1 Introduction

In the previous chapter, we reviewed aspects of probability theory and basic statistics,
where we introduced the concept of random variables and the associated concept
of probability distributions. We then discussed Gaussian and mixture-of-Gaussian
random variables and their vector-valued or multivariate versions. All these concepts
and examples are static, meaning that they do not have the temporal dimension
making the length or the dimension of the random vectors variable according to
how long the temporal sequence is. For a static section of the speech signal, its
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features based on spectral magnitudes (e.g., cepstra) can be well characterized by
the multivariate distribution of mixture of Gaussians. This gives rise to the Gaussian
mixture model (GMM) of speech features for a short-term or static speech sound
pattern.

In this chapter, we will extend the concept of the random variable to the (discrete-
time) random sequence, which is a collection of random variables indexed by uni-
formly spaced discrete times with a variable length. For the general statistical char-
acterization of random sequences, see Chap. 3 of [43], but in this chapter we will
extract only the part on Markov sequences as the most commonly used class of
general random sequences. The concept of state is essential to a Markov sequence.
When the state of the Markov sequence is confined to be discrete, we have a Markov
chain, where all possible values taken by the discrete state variable constitutes the
(discrete) state space and which we will cover in Sect. 3.2.

When each discrete state value is generalized to be a new randomvariable (discrete
or continuous), the Markov chain is then generalized to the (discrete or continuous)
hidden Markov sequence, or the hidden Markov model (HMM) when it is used to
characterize or approximate statistical properties of real-world data sequences. In
Sect. 3.3, we first parameterize the HMM in terms of transition probabilities of the
underlying Markov chain and of the distributional parameters in the static PDFs
given a fixed state. We then show how an HMM can be simulated via probabilistic
sampling. Efficient computation of the likelihood of an observation sequence given
the HMM is covered in detail, as this is an important but nonobvious element in
applying the HMM to speech recognition and other practical problems.

Then, in Sect. 3.4, we first provide background information on the EM algorithm
for maximum likelihood estimation of the parameters in general statistical models
that contain hidden or latent random variables. We then apply the EM algorithm
to solve the learning or parameter-estimation problem for the HMM (as well as
the GMM, which can be viewed as a special case of the HMM). The resulting
algorithm for the HMM learning is the celebrated Baum-Welch algorithm, widely
used in speech recognition and other applications involving the HMM. Step-by-step
derivations of the E-step in the Baum-Welch algorithm are given, which provides
the conditional probabilities of an HMM state given the input training data. The
M-step for the estimation of the transition probabilities of the Markov chain and of
the mean vectors and covariance matrices in the Gaussian HMM is also given with
step-by-step derivation.

We use Sect. 3.5 to present the celebratedViterbi algorithm for optimally decoding
the HMM state sequence given the input sequence data. The technique of dynamic
programming,which is the underlying principle of theViterbi algorithm, is described.

Finally, in Sect. 3.6, we connect theHMMas a statisticalmodel to practical speech
problems. The discussion starts with the HMM’s capability as an elegant generative
model for speech feature sequences; e.g., [3–5, 72]. The reasonably good match
between the HMM and speech data enables this generative model to be used for
the classification task of speech recognition via the use of Bayes rule [41, 57]. An
analysis of the weaknesses of the HMM as a generative model for speech motivates
its extensions to several variants, where the temporal independence and stationarity
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in the distribution of the observed speech data conditioned on each HMM state is
replaced bymore realistic, nonstationary, and temporally correlated dynamic systems
with latent or hidden structure [15, 27, 44, 77, 80, 98]. The mathematical formalism
of such dynamic systems expressed as the state-space model naturally bridges these
HMM variants to the recurrent neural networks to be presented later in Chap. 13 of
this book.

3.2 Markov Chains

A Markov chain is a discrete-state Markov sequence, a special case of a general
Markov sequence. The state space of a Markov chain is of a discrete nature and is
finite: qt ∈ {s( j), j = 1, 2, . . . , N }. Each of these discrete values is associated with
a state in theMarkov chain. Because of the one-to-one correspondence between state
s( j) and its index j , we often use the two interchangeably.

A Markov chain, qT
1 = q1, q2, . . ., qT , is completely characterized by the transi-

tion probabilities, defined by

P(qt = s( j)|qt−1 = s(i))
.= ai j (t), i, j = 1, 2, . . . , N (3.1)

and by the initial state-distribution probabilities. If these transition probabilities are
independent of time t , then we have a homogeneous Markov chain.

The transition probabilities of a (homogeneous) Markov chain are often conve-
niently put into a matrix form:

A = [ai j ], where ai j ≥ 0 ∀i, j; and
N∑

j=1

ai j = 1 ∀i, (3.2)

which is called the transition matrix of the Markov chain. Given the transition prob-
abilities of a Markov chain, the state-occupation probability

p j (t)
.= P[qt = s( j)]

can be easily computed. The computation is recursive according to

pi (t + 1) =
N∑

j=1

a ji p j (t), ∀i. (3.3)

If the state-occupation distribution of a Markov chain asymptotically converges:
pi (t) → π̄(s(i)) as t → ∞, we then call π̄(s(i)) a stationary distribution of the
Markov chain. For a Markov chain to have a stationary distribution, its transition
probabilities, ai j , have to satisfy

http://dx.doi.org/10.1007/978-1-4471-5779-3_13
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π̄(s(i)) =
N∑

j=1

a ji π̄(s( j)), ∀i. (3.4)

The stationary distribution of a Markov chain plays an important role in a class
of powerful statistical methods collectively named Markov Chain Monte Carlo
(MCMC) methods. These methods are used to simulate (i.e., to sample or to draw)
arbitrarily complex distributions, enabling one to carry out many difficult statistical
inference and learning tasks, which would otherwise be mathematically intractable.
The theoretical foundation of the MCMC methods is the asymptotic convergence of
a Markov chain to its stationary distribution, π̄(s(i)). That is, regardless of the ini-
tial distribution, the Markov chain is an asymptotically unbiased draw from π̄(s(i)).
Therefore, in order to sample from an arbitrarily complex distribution, p(s), one can
construct a Markov chain, by designing appropriate transition probabilities, ai j , so
that its stationary distribution is π̄(s) = p(s).

Three other interesting and useful properties of a Markov chain can be easily
derived. First, the state duration in a Markov chain is an exponential or geometric
distribution: pi (d) = C (aii )

d−1, where the normalizing constant is C = 1 − aii .
Second, the mean state duration is

di =
∞∑

d=1

d pi (d) =
∞∑

d=1

(1 − aii )(aii )
d−1 = 1

1 − aii
. (3.5)

Finally, the probability for an arbitrary observation sequence of a Markov chain,
which is a finite-length state sequence qT

1 , can be easily evaluated. This is simply
the product of the transition probabilities traversing the Markov chain: P(qT

1 ) =
π̄q1

∏T −1
t=1 aqt qt+1 , where π̄s1 is the initial state-occupation probability at t = 1.

3.3 Hidden Markov Sequences and Models

Let us view the Markov chain discussed above as an information source capable
of generating observational output sequences. Then, we can call the Markov chain
an observable Markov sequence because its output has one-to-one correspondence
to a state. That is, each state corresponds to a deterministically observable variable
or event. There is no randomness in the output in any given state. This lack of
randomness makes the Markov chain too restrictive to describe many real-world
informational sources, such as speech feature sequences, in an adequate manner.

Extension of the Markov chain to embed randomness, which overlaps among the
states in the Markov chain gives rise to a hidden Markov sequence. This extension is
accomplished by associating an observation probability distributionwith each state in
the Markov chain. The Markov sequence thus defined is a doubly embedded random
sequence whose underlying Markov chain is not directly observable, hence a hidden
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sequence. The underlying Markov chain in the hidden Markov sequence can be
observed only through a separate random function characterized by the observation
probability distributions.

Note that if the observation probability distributions do not overlap across the
states, then the underlying Markov chain would not be hidden. This is because,
despite the randomness embedded in the states, any observational value over a fixed
range specific to a state would be able to map uniquely to this state. In this case,
the hidden Markov sequence essentially reduces to a Markov chain. Some excellent
and more detailed exposition on the relationship between a Markov chain and its
probabilistic function, or a hidden Markov sequence, can be found in [103, 104].

When a hidden Markov sequence is used to describe a physical, real-world infor-
mational source, i.e., to approximate the statistical characteristics of such a source,
we often call it a hiddenMarkov model (HMM). One very successful practical use of
the HMM has been in speech processing applications, including speech recognition,
speech synthesis, and speech enhancement; e.g., [1, 12, 17, 46–48, 66, 71, 81, 83,
103, 111, 120, 124, 126, 128]. In these applications, the HMM is used as a powerful
model to characterize the temporally nonstationary, spatially variable, but regular,
learnable patterns of the speech signal. One key aspect of the HMM as the acoustic
model of speech is its sequentially arranged Markov states, which permit the use
of piecewise stationarity for approximating the globally nonstationary properties of
speech feature sequences. Very efficient algorithms have been developed to optimize
the boundaries of the local quasi-stationary temporal regimes, which we will discuss
in Sect. 3.6.

3.3.1 Characterization of a Hidden Markov Model

We now give a formal characterization of a hiddenMarkov sequence model or HMM
in terms of its basic elements and parameters.

1. Transition probabilities, A = [ai j ], i, j = 1, 2, . . . , N , of a homogeneous
Markov chain with a total of N states

ai j = P(qt = j |qt−1 = i), i, j = 1, 2, . . . , N . (3.6)

2. Initial Markov chain state-occupation probabilities: π = [πi ], i = 1, 2, . . . , N ,
where πi = P(q1 = i).

3. Observation probability distribution, P(ot |s(i)), i = 1, 2, . . . , N . If ot is dis-
crete, the distribution associated with each state gives the probabilities of sym-
bolic observations {v1, v2, . . . , vK }:

bi (k) = P[ot = vk |qt = i], i = 1, 2, . . . , N . (3.7)
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If the observation probability distribution is continuous, then the parameters,Λi ,
in the PDF characterize state i in the HMM.

The most common and successful PDF used in speech processing for characterizing
the continuous observation probability distribution in the HMM is a multivariate
mixture Gaussian distribution for vector-valued observation (ot ∈ RD):

bi (ot ) =
M∑

m=1

ci,m

(2π)D/2|Σ i,m |1/2 exp
[
−1

2
(ot − μi,m)TΣ−1

i,m(ot − μi,m)

]
(3.8)

In this Gaussian-mixture HMM, the parameter set Λi comprises scalar mixture
weights, ci,m , Gaussian mean vectors, μi,m ∈ RD , and Gaussian covariance matri-
ces, Σ i,m ∈ RD×D .

When the number of mixture components is reduced to one: M = 1, the state-
dependent output PDF reverts to a (uni-modal) Gaussian:

bi (ot ) = 1

(2π)D/2|Σ i |1/2 exp
[
−1

2
(ot − μi )

TΣ−1
i (ot − μi )

]
(3.9)

and the corresponding HMM is commonly called a (continuous-density) Gaussian
HMM.

Given the model parameters, one convenient way of characterizing a Gaussian
HMM is to view it as a generative device producing a sequence of observational data,
ot , t = 1, 2, . . . , T . In this view, the data at each time t is generated from the model
according to

ot = μi + rt (Σ i), (3.10)

where state i at a given time t is determined by the evolution of the Markov chain
characterized by ai j , and

rt (Σ i ) = N (0,Σ i ) (3.11)

is a zero-mean, Gaussian, IID (independent and identically distributed) residual
sequence, which is generally state dependent as indexed by i . Because the resid-
ual sequence rt (Σ i ) is IID, and because μi is constant (i.e., not time-varying) given
state i , their sum, which gives the observation ot is thus also IID given the state.
Therefore, the HMM discussed above would produce locally or piecewise stationary
sequences. Since the temporal locality in question is confinedwithin state occupation
of the HMM, we sometimes use the term stationary-state HMM to explicitly denote
such a property.

One simpleway to extend a stationary-stateHMMso that the observation sequence
is no longer state-conditioned IID is as follows. We can modify the constant term μi
in Eq.3.10 to explicitly make it time-varying:

ot = gt (Λi ) + rt (Σ i ), (3.12)
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where parameters Λi in the deterministic time-trend function gt (Λi ) is dependent
on state i in the Markov chain. This gives rise to the trended (Gaussian) HMM [18,
23, 24, 32, 45, 50, 62, 69, 85, 120, 126], a special version of a nonstationary-state
HMM where the first-order statistics (mean) are time-varying and thus violating a
basic condition of wide-sense stationarity.

3.3.2 Simulation of a Hidden Markov Model

When we view a hidden Markov sequence or an HMM as a model for the informa-
tion source, which has been explicitly depicted in Eq.3.10, sometimes it is desir-
able to use this model to generate its samples. This is the problem of simulating
the HMM given appropriate values for all model parameters: {A, π, B} for a dis-
crete HMM or {A, π,Λ} for a continuous-density HMM. The result of the simu-
lation is to produce an observation sequence, oT

1 = o1, o2, . . . , oT , which obeys
the statistical law embedded in the HMM. A simulation process is described in
Algorithm 3.1.

Algorithm 3.1 Draw Samples from an HMM.

1: procedure DrawFromHMM(A, π , P(ot |s(i)))
� A is the transition probability

� π is the initial state occupation probability
� P(ot |s(i)) is the observation probability given a state (either Eq. 3.7 if discrete or Eq.

3.8 if continuous
2: Select an initial state q1 = s(i) by drawing from the discrete distribution π

3: for t ← 1; t ≤ T ; t ← t + 1 do
4: Draw an observation ot based on P(ot |s(i))

5: Make aMarkov-chain transition from the current state qt = s(i) to a new state qt+1 = s( j)

according to the transition probability ai j , and assign i ← j.
6: end for
7: end procedure

3.3.3 Likelihood Evaluation of a Hidden Markov Model

Likelihood evaluation is a basic task needed for speech processing applications
involving an HMM that uses a hidden Markov sequence to approximate vectorized
speech features.

Let qT
1 = (q1, . . . , qT ) be a finite-length sequence of states in a Gaussian-mixture

HMM or GMM-HMM, and let P(oT
1 , qT

1 ) be the joint likelihood of the observation
sequence oT

1 = (o1, . . . , oT ) and the state sequence qT
1 . Let P(oT

1 |qT
1 ) denote the

likelihood that the observation sequence oT
1 is generated by the model conditioned

on the state sequence qT
1 .
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In the Gaussian-mixture HMM, the conditional likelihood P(oT
1 |qT

1 ) is in the
form of

P(oT
1 |qT

1 ) =
T∏

t=1

bi (ot ) =
T∏

t=1

M∑
m=1

ci,m

(2π)D/2|Σ i,m |1/2 exp

[
− 1

2
(ot − μi,m )TΣ−1

i,m (ot − μi,m )

]

(3.13)

On the other hand, the probability of state sequence qT
1 is just the product of

transition probabilities, i.e.,

P(qT
1 ) = πq1

T −1∏
t=1

aqt qt+1 . (3.14)

In the remaining of the chapter, for notational simplicity, we consider the case where
the initial state distribution has the probability of one in the starting state: πq1 = 1.

Note that the joint likelihood P(oT
1 , qT

1 ) can be obtained by the product of like-
lihoods in Eqs. 3.13 and 3.14:

P(oT
1 , qT

1 ) = P(oT
1 |qT

1 )P(qT
1 ). (3.15)

In principle, the total likelihood for the observation sequence can be computed by
summing the joint likelihoods in Eq.3.15 over all possible state sequences qT

1 :

P(oT
1 ) =

∑
qT
1

P(oT
1 , qT

1 ). (3.16)

However, the amount of this computation is exponential in the length of the observa-
tion sequence, T , and hence the naive computation of P(oT

1 ) is not tractable. In the
next section, we will describe the forward-backward algorithm [6], which computes
P(oT

1 ) for the HMM with complexity linear in T .

3.3.4 An Algorithm for Efficient Likelihood Evaluation

To describe the algorithm, we first define the forward probabilities by

αt (i) = P(qt = i, ot
1), t = 1, . . . , T, (3.17)

and the backward probabilities by

βt (i) = P(oT
t+1|qt = i), t = 1, . . . , T − 1, (3.18)
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both for each state i in the Markov chain. The forward and backward probabilities
can be calculated recursively from

αt ( j) =
N∑

i=1

αt−1(i)ai j b j (ot ), t = 2, 3, . . . , T ; j = 1, 2, . . . , N (3.19)

βt (i) =
N∑

j=1

βt+1( j)ai j b j (ot+1), t = T − 1, T − 2, . . . , 1; i = 1, 2, . . . , N

(3.20)
Proofs of these recursions are given immediately after this subsection. The starting
value for the α recursion is, according to the definition in Eq.3.17,

α1(i) = P(q1 = i, o1) = P(q1 = i)P(o1|q1) = πi bi (o1), i = 1, 2, . . . , N
(3.21)

and that for the β recursion is chosen as

βT (i) = 1, i = 1, 2, . . . , N , (3.22)

so as to provide the correct values for βT −1 according to the definition in Eq.3.18.
To compute the total likelihood P(oT

1 ) in Eq.3.16, we first compute

P(qt = i, oT
1 ) = P(qt = i, ot

1, oT
t+1)

= P(qt = i, ot
1)P(oT

t+1|ot
1, qt = i)

= P(qt = i, ot
1)P(oT

t+1|qt = i)

= αt (i)βt (i), (3.23)

for each state i and t = 1, 2, . . . , T using definitions in Eqs. 3.17 and 3.18. Note that
P(oT

t+1|ot
1, qt = i) = P(oT

t+1|qt = i) because the observations are IID given the
state in the HMM. Given this, P(oT

1 ) can be computed as

P(oT
1 ) =

N∑
i=1

P(qt = i, oT
1 ) =

N∑
i=1

αt (i)βt (i). (3.24)

Taking t = T in Eq.3.24 and using Eq.3.22 lead to

P(oT
1 ) =

N∑
i=1

αT (i). (3.25)

Thus, strictly speaking, the β recursion is not necessary for the forward sco-
ring computation, and hence the algorithm is often called the forward algorithm.
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However, the β computation is a necessary step for solving the model parameter
estimation problem, which will be covered in the next section.

3.3.5 Proofs of the Forward and Backward Recursions

Proofs of the recursion formulas, Eqs. 3.19 and 3.20, are provided here, using the
total probability theorem, Bayes rule, and using theMarkov property and conditional
independence property of the HMM.

For the forward probability recursion, we have

αt ( j) = P(qt = j, ot
1)

=
N∑

i=1

P(qt−1 = i, qt = j, ot−1
1 , ot )

=
N∑

i=1

P(qt = j, ot |qt−1 = i, ot−1
1 )P(qt−1 = i, ot−1

1 )

=
N∑

i=1

P(qt = j, ot |qt−1 = i)αt−1(i)

=
N∑

i=1

P(ot |qt = j, qt−1 = i)P(qt = j |qt−1 = i)αt−1(i)

=
N∑

i=1

b j (ot )ai jαt−1(i). (3.26)

For the backward probability recursion, we have

βt (i) = P(oT
t+1|qt = i)

= P(oT
t+1, qt = i)

P(qt = i)

=
∑N

j=1 P(oT
t+1, qt = i, qt+1 = j)

P(qt = i)

=
∑N

j=1 P(oT
t+1|qt = i, qt+1 = j)P(qt = i, qt+1 = j)

P(qt = i)

=
N∑

j=1

P(oT
t+1|qt+1 = j)

P(qt = i, qt+1 = j)

P(qt = i)
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=
N∑

j=1

P(oT
t+2, ot+1|qt+1 = j)ai j

=
N∑

j=1

P(oT
t+2|qt+1 = j)P(ot+1|qt+1 = j)ai j

=
N∑

j=1

βt+1( j)b j (ot+1)ai j . (3.27)

3.4 EM Algorithm and Its Application to Learning HMM
Parameters

3.4.1 Introduction to EM Algorithm

Despite many unrealistic aspects of the HMM as a model for speech feature
sequences, one of the most important reasons for its wide-spread use in speech
recognition is the Baum-Welch algorithm developed in 1960s [6], which is a promi-
nent instance of the highly popular EM (Expectation-Maximization) algorithm [22],
for efficient training of the HMM parameters from data. In this section, we describe
first the general principle of the EM algorithm. Then, we move to its application to
the HMM parameter estimation problem, where the special method of EM becomes
known as the Baum-Welch algorithm. For tutorial material on the EM and its basic
applications, see [10, 12, 42, 66, 94].

When there are hidden or latent random variables in a statistical model, maxi-
mum likelihood estimation is often difficult and the EM algorithm often becomes
effective. Let us denote the complete data by y = {o, h} where o is observed data
(e.g., speech feature sequence data) and h is hidden random variables (e.g., unob-
served HMM state sequence). Here, we consider the problem of finding an estimate
for the unknown parameter θ , which requires maximization of the log-likelihood
function, log p(o; θ). However, we may find that this is either too difficult or there
are difficulties in finding an expression for the PDF itself. In such circumstances, an
iterative solution is possible if the complete data, y, can be found such that the PDF
in terms of y is much easier to express in closed form and to maximize. In general
we can find a mapping from the complete to the incomplete or partial data: o = g(y).
However, this is usually not evident until one is able to define what the complete
data set is. Unfortunately defining what constitutes the complete data is usually an
arbitrary procedure that is highly problem specific and often requires some ingenuity
on the part of the algorithm designer.
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As a way to motivate the EM algorithm, we wish to overcome the computational
difficulty of direct optimization of the PDF on the partially observed data o. To
accomplish this, we supplement the available data o with imaginary missing, unob-
served, or hidden data h, to form the complete data y. The hope is that with a clever
choice of the hidden data h, we can work on the complete data y rather than on the
original partial data o to make the optimization easier for the log likelihood of o.

Once we have identified the complete data y, even though an expression for
log p(y; θ) can now be derived easily, we cannot directly maximize log p(y; θ)with
respect to θ since y is unavailable. However, we observed o and if we further assume
that we have a good guessed estimate for θ , then we can consider the expected value
of log p(y; θ) conditioned on what we have observed, or the following conditional
expectation:

Q(θ |θ0) = Eh|o[log p(y; θ)|o; θ0] = E[log p(o, h; θ)|o; θ0] (3.28)

and we attempt to maximize this expectation to yield, not the maximum likelihood
estimate, but the next best estimate for θ given the previously available estimate of
θ0.

Using Eq.3.28 for computing the conditional expectation when hidden vector h
is continuous, we have

Q(θ |θ0) =
∫

p(h|o; θ0) log p(y; θ)dh. (3.29)

When the hidden vector h is discrete (i.e., taking only discrete values), Eq.3.28 is
used to evaluate the conditional expectation:

Q(θ |θ0) =
∑

h

P(h|o; θ0) log p(y; θ) (3.30)

where P(h|o; θ0) is a conditional distribution given the initial parameter estimate θ0,
and the summation is over all possible discrete-valued vectors that h may take.

Given the initial parameters θ0, the EM algorithm iterates alternating between
the E-step, which finds an appropriate expression for the conditional expectation
and sufficient statistics for its computation, and the M-step, which maximizes the
conditional expectation, until either the algorithm converges or other stopping criteria
are met.

Convergence of the EM algorithm is guaranteed (under mild conditions) in the
sense that the average log-likelihood of the complete data does not decrease at each
iteration, that is

Q(θ |θk+1) ≥ Q(θ |θk)

with equality when θk is already an maximum-likelihood estimate.
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The main properties of the EM algorithm are:

• It gives only a local, rather than the global, optimum in the likelihood of partially
observed data.

• An initial value for the unknown parameter is needed, and as with most iterative
procedures a good initial estimate is required for desirable convergence and a good
maximum-likelihood estimate.

• The selection of the complete data set is arbitrary.
• Even if log p(y; θ) can usually be easily expressed in closed form, finding the
closed-form expression for the expectation is usually hard.

3.4.2 Applying EM to Learning the HMM—Baum-Welch
Algorithm

We now discuss how maximum-likelihood parameter estimation and, in particular,
the EM algorithm is applied to solve the learning problem for the HMM. As intro-
duced in the preceding section, the EM algorithm is a general iterative technique
for maximum likelihood estimation, with local optimality in general, when hidden
variables exist. When such hidden variables take the form of aMarkov chain, the EM
algorithm becomes the Baum-Welch algorithm. Below we use a Gaussian HMM as
the example to describe steps involved in deriving E-step and M-step computations,
where the complete data in the general case of EM above consists of the observation
sequence and the hidden Markov-chain state sequence; i.e., y = [oT

1 , qT
1 ].

Each iteration in the EM algorithm consists of two steps for any incomplete data
problem including the current HMM parameter estimation problem. In the E (expec-
tation) step of the Baum-Welch algorithm, the following conditional expectation, or
the auxiliary function Q(θ |θ0), need to be computed:

Q(θ |θ0) = E[log P(oT
1 , qT

1 |θ)|oT
1 , θ0], (3.31)

where the expectation is taken over the “hidden” state sequence qT
1 . For the EM

algorithm to be of utility, Q(θ |θ0) has to be sufficiently simplified so that the M
(maximization) step can be carried out easily. Estimates of the model parameters
are obtained in the M step via maximization of Q(θ |θ0), which is in general much
simpler than direct procedures for maximizing P(oT

1 |θ).
An iteration of the above two steps will lead to maximum likelihood estimates

of model parameters with respect to the objective function P(oT
1 |θ). This is a direct

consequence of Baum’s inequality [6], which asserts that

log

(
P(oT

1 |θ)

P(oT
1 |θ0)

)
≥ Q(θ |θ0) − Q(θ0|θ0) = 0.
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We now carry out the E- and M-steps for the Gaussian HMM below, including
detailed derivations.

3.4.2.1 E-Step

The goal of the E-step is to simplify the conditional expectation Q(θ |θ0) into a form
suitable for direct maximization in the M-step. To proceed, we first explicitly write
out the Q(θ |θ0) function in terms of expectation over state sequences qT

1 in the form
of a weighted sum

Q(θ |θ0) = E[log P(oT
1 , qT

1 |θ)|oT
1 , θ0]

=
∑
qT

1

P(qT
1 |oT

1 , θ0) log P(oT
1 , qT

1 |θ), (3.32)

where θ and θ0 denote the HMM parameters in the current and the immediately
previous EM iterations, respectively. To simplify the writing, denote by Nt (i) the
quantity

− D

2
log(2π) − 1

2
log |Σ i | − 1

2
(ot − μi )

T Σ−1
i (ot − μi ).

which is logarithm of the Gaussian PDF associated with state i .
We now use P(qT

1 ) = ∏T −1
t=1 aqt qt+1 and P(oT

1 , qT
1 ) = P(oT

1 |qT
1 )P(qT

1 ). These
lead to

log P(oT
1 , qT

1 |θ) =
T∑

t=1

Nt (qt ) +
T −1∑
t=1

log aqt qt+1

and the conditional expectation in Eq.3.32 can be rewritten as

Q(θ |θ0) =
∑
qT
1

P(qT
1 |oT

1 , θ0)

T∑
t=1

Nt (qt ) +
∑
qT
1

P(qT
1 |oT

1 , θ0)

T −1∑
t=1

log aqt qt+1 .

(3.33)
To simplify Q(θ |θ0) here, we write the first term in Eq.3.33 as

Q1(θ |θ0) =
N∑

i=1

⎧⎪⎨
⎪⎩

∑
qT
1

P(qT
1 |oT

1 , θ0)

T∑
t=1

Nt (qt )

⎫⎪⎬
⎪⎭ δqt ,i , (3.34)

and the second term as

Q2(θ |θ0) =
N∑

i=1

N∑
j=1

{
∑
qT
1

P(qT
1 |oT

1 , θ0)

T −1∑
t=1

log aqt qt+1}δqt ,iδqt+1, j , (3.35)
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where δ indicates the Kronecker delta function. Let us examine Eq. 3.34 first. By
exchanging summations and using the obvious fact that

∑
qT
1

P(qT
1 |oT

1 , θ0)δqt ,i = P(qt = i |oT
1 , θ0),

we can simplify Q1 into

Q1(θ |θ0) =
N∑

i=1

T∑
t=1

P(qt = i |oT
1 , θ0)Nt (i). (3.36)

After carrying out similar steps for Q2(θ |θ0) in Eq.3.35 we obtain a similar simpli-
fication

Q2(θ |θ0) =
N∑

i=1

N∑
j=1

T −1∑
t=1

P(qt = i, qt+1 = j |oT
1 , θ0) log ai j . (3.37)

We note that in maximizing Q(θ |θ0) = Q1(θ |θ0) + Q2(θ |θ0), the two terms
can be maximized independently. That is, Q1(θ |θ0) contains only the parameters in
Gaussians, while Q2(θ |θ0) involves just the parameters in theMarkov chain. Also, in
maximizing Q(θ |θ0), the weights in Eqs. 3.36 and 3.37, or γt (i) = P(qt = i |oT

1 , θ0)

and ξt (i, j) = P(qt = i, qt+1 = j |oT
1 , θ0), respectively, are treated as known

constants due to their conditioning on θ0. They can be computed efficiently via the
use of the forward and backward probabilities discussed earlier.

The posterior state transition probabilities in the Gaussian HMM are

ξt (i, j) = αt (i)βt+1( j)ai j exp(Nt+1( j))

P(oT
1 |θ0)

, (3.38)

for t = 1, 2, . . . , T − 1. (Note that ξT (i, j) has no definition.) The posterior state
occupancy probabilities can be obtained by summing ξt (i, j) over all the destination
states j according to

γt (i) =
N∑

j=1

ξt (i, j), (3.39)

for t = 1, 2, . . . , T − 1. γT (i) can be obtained by its very definition:

γT (i) = P(qT = i |oT
1 , θ0) = P(qT = i, oT

1 |θ0)
P(oT

1 |θ0)
= αT (i)

P(oT
1 |θ0)

. (3.40)

Note for the left-to-right HMM, γT (i) has a value of one for i = N and of zero
otherwise.
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Further, we note that the summations in Eqs. 3.36 and 3.37 are taken over states i
or over state pairs i, j , which is significantly simpler than the summations over state
sequences qT

1 as in the unsimplified forms of Q1(θ |θ0) and Q2(θ |θ0) in Eq.3.33.
Equations3.36 and 3.37 are the simplistic form of the auxiliary objective function,
which can be maximized in the M-step discussed next.

3.4.2.2 M-Step

The reestimation formulas for the transition probabilities of the Markov chain in the
Gaussian HMM can be easily established by setting ∂ Q2

∂ai j
= 0, for Q2 in Eq.3.37

and for i, j = 1, 2, . . . , N , subject to the constraint
∑N

j=1 ai j = 1. The standard
Lagrange multiplier procedure leads to the reestimation formula of

âi j =
∑T −1

t=1 ξt (i, j)∑T −1
t=1 γt (i)

, (3.41)

where ξt (i, j) and γt (i) are computed according to Eqs. 3.38 and 3.39.
To derive the reestimation formulas for the parameters in the state-dependent

Gaussian distributions, we first remove optimization-independent terms and factors
in Q1 in Eq.3.36. Then we have an equivalent objective function of

Q1(μi ,Σ i ) =
N∑

i=1

Tr∑
t=1

γt (i)
(
ot − μi

) TΣ−1
i

(
ot − μi

) − 1

2
log |Σ i |. (3.42)

The reestimation formula for the covariance matrices are obtained by solving

∂ Q1

∂Σ i
= 0, (3.43)

for i = 1, 2, . . . , N .
For solving it, we employ the trick of variable transformation: K = Σ−1 (we

omit the state index i for simplicity), and we treat Q1 as a function of K. Then, the
derivative of log |K| (a term in Eq.3.36) with respect to K’s (l, m)-th entry, klm , is
the (l, m)-th entry of Σ , or σlm . We now can reduce ∂ Q1

∂klm
= 0 to

T∑
t=1

γt (i)

{
1

2
σlm − 1

2
(ot − μi )l(ot − μi )m

}
= 0 (3.44)

for each entry: l, m = 1, 2, . . . , D. Writing this result in a matrix form, we obtain
the compact reestimation formula for the covariance matrix in state i as follows:
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Σ̂ i =
∑T

t=1 γt (i)(ot − μ̂i )(ot − μ̂i )
T

∑T
t=1 γt (i)

(3.45)

for each state: i = 1, 2, . . . , N , where μ̂i is the re-estimate of the mean vectors in the
Gaussian HMM in state i , whose reestimation formula is straightforward to derive
and has the following easily interpretable form:

μ̂i =
∑T

t=1 γt (i)ot∑T
t=1 γt (i)

(3.46)

The above derivation is for the single-Gaussian HMM. The EM algorithm for the
GMM-HMM can be similarly derived by considering the Gaussian component of
each frame at each state as another hidden variable. In Chap.6 we will describe the
deep neural network (DNN)-HMM hybrid system in which the observation proba-
bility is estimated using a DNN.

3.5 Viterbi Algorithm for Decoding HMM State Sequences

3.5.1 Dynamic Programming and Viterbi Algorithm

Dynamic Programming (DP) is a divide-and-conquer method for solving complex
problems by breaking them down into simpler sub-problems [7, 108]. It was origi-
nally developed by R. Bellman in 1950s [7]. The foundation of DP was laid by the
Bellman optimality principle. The principle stipulates that: “In an optimization prob-
lem concerning multiple stages of interrelated decisions, whatever the initial state
(or condition) and the initial decisions are, the remaining decisions must constitute
an optimal rule of choosing decisions with regards to the state that results from the
first decision”.

As an example, we discuss the optimality principle inMarkov decision processes.
A Markov decision process is characterized by two sets of parameters. The first set
is the transition probabilities of

Pk
i j (n) = P(state j , stagen+1|statei , stagen, decisionk),

where the current state of the system is dependent only on the state of the system
at the previous stage and the decision taken at that stage (Markov property). The
second set of parameters provide rewards defined by:

Rk
i (n) = reward at stage n and at state i when decision k is chosen.

Let us define F(n, i) to be the average of the total reward at state n and state i
when the optimal decision is taken. This can be computed by DP using the following
recursion given by the optimality principle:

http://dx.doi.org/10.1007/978-1-4471-5779-3_6
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F(n, i) = max
k

{Rk
i (n) +

∑
j

Pk
i j (n)F(n + 1, j)}. (3.47)

In particular, when n = N (at the final stage), the total reward at state i is

F(N , i) = max
k

Rk
i (N ). (3.48)

The optimal decision sequence can be traced back after the end of this recursive
computation.

We see in the above that in applying DP, various stages (e.g., stage 1, 2, . . . , n,

. . . , N in the above example) in the optimization process must be identified. We are
required at each stage to make optimal decision(s). There are several states (indexed
by i in the above example) of the system associated with each stage. The decision
(indexed by k) taken at a given stage changes the problem from the current stage n
to the next stage n + 1 according to the transition probability Pk

i j (n).
If we apply the DP technique to finding the optimal path, then the Bellman opti-

mality principle can be alternatively stated as follows: “The optimal path from nodes
A to C through node B must consist of the optimal path from A to B concatenated
with the optimal path from B to C”. The implication of this optimality principle is
tremendous. That is, in order to find the best path from node A via a “predecessor”
node B, there will be no need to reconsider all the partial paths leading from A to B.
This significantly reduces the path search effort comparedwith the brute-force search
or exhaustive search. While it may be unknown whether the “predecessor” node B
is on the best path or not, many candidates can be evaluated and the correct one be
ultimately determined via a backtracking procedure in DP. The Bellman optimality
principle is the essence of a very popular optimization technique in speech processing
applications involving the HMM, which we describe below.

3.5.2 Dynamic Programming for Decoding HMM States

One fundamental computational problem associated with the HMM discussed so
far in this chapter is to find, in an efficient manner, the best sequence of the HMM
states given an arbitrary sequence of observations oT

1 = o1, o2, . . . , oT . This is a
complex T -stage path-finding optimization problem, and is directly suited for the
DP solution. The DP technique used for such purposes is also called the Viterbi
algorithm, developed originally for optimal convolution-code channel decoding in
digital communication.

To illustrate the Viterbi algorithm as an optimal path-finding technique, we can
use the two-dimensional grid, also called the trellis diagram, for a left-to-right HMM.
A node in the trellis diagram is associated with both a time frame t on the horizontal
axis and an HMM state i on the vertical axis.
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For a given HMM characterized by the state transitional probabilities ai j and by
the state-conditioned output probability distributions bi (ot ), let δi (t) represent the
maximal value of the joint likelihood of the partial observation sequence ot

1 up to
time t , and the associated HMM state sequence while in state i at time t . That is,

δi (t) = max
q1,q2,...,qt−1

P(ot
1, qt−1

1 , qt = i). (3.49)

Note that each δi (t) defined here is associated with a node in the trellis diagram.
Each increment of time corresponds to reaching a new stage in DP. At the final stage
t = T , we have the objective function of δi (T ), which is accomplished via all the
previous stages of computation for t ≤ T −1. Based on the DP optimality principle,
the optimal partial likelihood of Eq. 3.50 at the processing stage of t + 1 can be
computed using the following functional equation as a recursion:

δ j (t + 1) = max
i

δi (t)ai j b j (ot+1), (3.50)

for each state j . Each state at this processing stage is a hypothesized “precursor” node
in the global optimal path. All such nodes except one will be eventually eliminated
after the backtracking operation. The essence of DP used here is that we only need
to compute the quantities of δ j (t +1) as individual nodes in the trellis, removing the
need to keep track of a very large number of partial paths from the initial stage to the
current (t + 1)th stage, which would be required for the exhaustive search. The opti-
mality is guaranteed, due to the DP optimality principle, with the computation only
linearly, rather than geometrically, increasing with the length T of the observation
data sequence.

Besides the key recursion of Eq.3.50, the complete Viterbi algorithm requires
additional steps of recursion initialization, recursion termination, and path back-
tracking. The complete algorithm is described in Algorithm 3.2 with initial state
probabilities πi . The result of the Viterbi algorithm is P∗, the maximum joint
likelihood of the observation and state sequence, together with q∗(t), the corre-
sponding state transition path.

The optimal state transition path found by the above Viterbi algorithm for a left-
to-right HMM is equivalent to the information required to determine the optimal
segmentation of the HMM states. The concept of state segmentation is most rele-
vant to a left-to-right HMM commonly used in speech modeling and recognition,
as each state in such an HMM is typically associated with a reasonably large num-
ber of consecutive time frames in the observation sequence. This is so because the
observations cannot be easily assigned back to earlier states due to the left-to-right
constraint and because the last frame must be accounted for by the right-most state
in the left-to-right HMM.

Note that this same Viterbi algorithm can be applied to single-Gaussian HMM,
GMM-HMM and even the DNN-HMM we will describe in Chap.6.

http://dx.doi.org/10.1007/978-1-4471-5779-3_6
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Algorithm 3.2 Viterbi algorithm for decoding HMM state sequence.
1: procedure ViterbiDecode(A = [ai j ], π , b j (ot ))

� A is the transition probability
� π is the initial state occupation probability

� b j (ot ) is observation probability given HMM state j for observation vector ot
2: δi (1) ← πi bi (o1) � Initialize at t = 1
3: ψi (1) ← 0 � Initialize at t = 1
4: for t ← 2; t ≤ T ; t ← t + 1 do � Forward recursion
5: δ j (t) ← maxi δi (t − 1)ai j b j (ot )

6: ψ j (t) ← arg max1≤i≤N δi (t − 1)ai j
7: end for
8: P∗ ← max1≤i≤N [δi (T )]
9: q(T ) ← max1≤i≤N [δi (T )] � Initialize backtracking
10: for t ← T − 1; t ≥ 1; t ← t − 1 do � Backward state tracking
11: q∗(t) ← ψq∗(t+1)(t + 1)
12: end for

Return optimal HMM state path q∗(t), 1 ≤ t ≤ T
13: end procedure

3.6 The HMM and Variants for Generative Speech Modeling and
Recognition

The popularity of the HMM in speech recognition stems from its ability as a gen-
erative sequence model of acoustic features of speech. See excellent reviews of
the HMM for selected speech modeling and recognition applications in [3, 4, 72,
103–105]. One most interesting and unique problem in speech modeling and in the
related speech recognition application lies in the nature of variable length in acoustic-
feature sequences. This unique characteristic of speech rests primarily in its temporal
dimension. That is, the actual values of the speech feature are correlated lawfully
with the elasticity in the temporal dimension. As a consequence, even if two word
sequences are identical, the acoustic data of speech features typically have distinct
lengths. For example, different acoustic samples from the same sentence usually
contain different data dimensionality, depending on how the speech sounds are pro-
duced and in particular how fast the speaking rate is. Further, the discriminative cues
among separate speech classes are often distributed over a reasonably long temporal
span, which often crosses neighboring speech units. Other special aspects of speech
include class-dependent acoustic cues. These cues are often expressed over diverse
time spans that would benefit from different lengths of analysis windows in speech
analysis and feature extraction.

Conventional wisdom posits that speech is a one-dimensional temporal signal in
contrast to image and video as higher dimensional signals. This view is simplistic
and does not capture the essence and difficulties of the speech recognition problem.
Speech is best viewed as a two-dimensional signal, where the spatial (or frequency
or tonotopic) and temporal dimensions have vastly different characteristics, in con-
trast to images where the two spatial dimensions tend to have similar properties. The
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“spatial” dimension in speech is associatedwith the frequencydistribution and related
transformations, capturing a number of variability types including primarily those
arising from environments, speakers, accent, speaking style, and speaking rate. The
latter induces correlations between spatial and temporal dimensions, and the envi-
ronment factors include microphone characteristics, speech transmission channel,
ambient noise, and room reverberation.

The temporal dimension in speech, and in particular its correlation with the spatial
or frequency-domain properties of speech, constitutes one of the unique challenges
for speech recognition. The HMM addresses this challenge to a limited extent. In
this section, a selected set of advanced generative models, as various extensions of
the HMM, will be described that are aimed to address the same challenge, where
Bayesian approaches are used to provide temporal constraints as prior knowledge
about aspects of the physical process of human speech production.

3.6.1 GMM-HMMs for Speech Modeling and Recognition

In speech recognition, one most common generative learning approach is based on
the Gaussian-mixture-model based hidden Markov models, or GMM-HMM; e.g.,
[12, 39, 74, 103, 105]. As discussed earlier, a GMM-HMM is a statistical model
that describes two dependent random processes, an observable process, and a hid-
den Markov process. The observation sequence is assumed to be generated by each
hidden state according to a Gaussianmixture distribution. AGMM-HMM is parame-
terized by a vector of state prior probabilities, the state transition probability matrix,
and by a set of state-dependent parameters in Gaussian mixture models. In terms of
modeling speech, a state in the GMM-HMM is typically associated with a subseg-
ment of a phone in speech. One important innovation in the use of HMMs for speech
recognition is the introduction of context-dependent states (e.g., [40, 70]), motivated
by the desire to reduce output variability of speech feature vectors associated with
each state, a common strategy for “detailed” generative modeling. A consequence
of using context dependency is a vast expansion of the HMM state space, which,
fortunately, can be controlled by regularization methods such as state tying. It turns
out that such context dependency also plays a critical role in the recent advance of
speech recognition in the area of discrimination-based deep learning [16, 19, 20,
110, 119], to be discussed in later chapters of this book.

The introduction of the HMM and the related statistical methods to speech recog-
nition in mid 1970s [3, 72] can be regarded as the most significant paradigm shift
in the field, as discussed and analyzed in [4, 5]. One major reason for this early
success is the highly efficient EM algorithm [6], which we described earlier in this
chapter. This maximum likelihood method, often called Baum-Welch algorithm, had
been a principal way of training the HMM-based speech recognition systems until
2002, and is still one major step (among many) in training these systems nowadays.
It is interesting to note that Baum-Welch algorithm serves as one major motivating
example for the later development of the more general EM algorithm [22]. The goal
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of maximum likelihood or EM method in training GMM-HMM speech recognizers
is to minimize the empirical risk with respect to the joint likelihood loss involv-
ing a sequence of linguistic labels and a sequence of acoustic data of speech, often
extracted at the frame level. In large-vocabulary speech recognition systems, it is
normally the case that word-level labels are provided, while state-level labels are
latent. Moreover, in training GMM-HMM-based speech recognition systems, para-
meter tying is often used as a type of regularization. For example, similar acoustic
states of the triphones can share the same Gaussian mixture model.

The use of the generative model of HMMs for representing the (piecewise sta-
tionary) dynamic speech pattern and the use of EM algorithm for training the tied
HMM parameters constitute one most prominent and successful example of gen-
erative learning in speech recognition. This success has been firmly established by
the speech community, and has been widely spread to machine learning and related
communities. In fact, the HMM has become a standard tool not only in speech
recognition, but also in machine learning as well as their related fields such as bioin-
formatics and natural language processing. For many machine learning as well as
speech recognition researchers, the success of HMMs in speech recognition is a
bit surprising due to the well-known weaknesses of the HMM in modeling speech
dynamics. The remaining part of this section is aimed to address ways of using more
advanced dynamic generative models and related techniques for speech modeling
and recognition.

3.6.2 Trajectory and Hidden Dynamic Models for Speech Modeling
and Recognition

Despite great success of GMM-HMMs in speech modeling and recognition, their
weaknesses, such as the conditional independence and piecewise stationary assump-
tions, have been well known for speech modeling and recognition applications since
early days [15, 23, 24, 32, 46, 51, 95, 96]. Since early 1990s, speech recognition
researchers have begun the development of statistical models that capture more real-
istic dynamic properties of speech in the temporal dimension than HMMs do. This
class of extended HMMmodels have been variably called stochastic segment model
[95, 96], trended or nonstationary-state HMM [18, 23, 32], trajectory segmental
model [69, 95], trajectory HMM [124, 126], stochastic trajectory model [62], hid-
den dynamic model [15, 25, 29, 44, 87–89, 98, 107], buried Markov model [11, 13,
14], structured speech model, and hidden trajectory model [29, 50–52, 117, 118,
128], depending on different “prior knowledge” applied to the temporal structure of
speech and on various simplifying assumptions to facilitate the model implementa-
tion. Common to all these beyond-HMM model variants is some temporal dynamic
structure built into the models. Based on the nature of such structure, we can classify
these models into two main categories. In the first category are the models focusing
on temporal correlation structure at the “surface” acoustic level. The second category
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consists of deep hidden or latent dynamics, where the underlying speech production
mechanisms are exploited as a prior to represent the temporal structure that accounts
for the visible speech pattern. When the mapping from the hidden dynamic layer to
the visible layer is limited to be linear and deterministic, then the generative hidden
dynamic models in the second category reduce to the first category.

The temporal span in many of the generative dynamic/trajectory models above is
often controlled by a sequence of linguistic labels, which segment the full sentence
into multiple regions from left to right; hence segment models.

In general, the trajectory or segmental models with hidden or latent dynamics
make use of the switching state space formulation, well studied in the literature; e.g.,
[28, 53, 54, 61, 79, 92, 106]. These models exploit temporal recursion to define
the hidden dynamics, z(k), which may correspond to articulatory movements during
human speech production. Each discrete region or segment, s, of such dynamics is
characterized by the s-dependent parameter set Λs, with the “state noise” denoted
by ws(k). The memory-less nonlinear mapping function is exploited to link the
hidden dynamic vector z(k) to the observed acoustic feature vector o(k), with the
“observation noise” denoted by vs(k), and parameterized also by segment-dependent
parameters. This pair of “state equation” and “observation equation” below form a
general state-space switching nonlinear dynamic system model:

z(k) = qk[z(k − 1),Λs] + ws(k − 1) (3.51)

o(k′) = rk′ [z(k′),Ωs′ ] + vs′(k′), (3.52)

where subscripts k and k′ denote that functions q[.] and r[.] are time varying andmay
be asynchronouswith each other. In themean time, s or s′ denotes the dynamic region
that is correlated with discrete linguistic categories either in terms of allophone states
as in the standard GMM-HMM system (e.g., [40, 70, 103]) or in terms of atomic
units constructed from articulation-motivated phonological features (e.g., [26, 47,
59, 77, 86, 111]).

The speech recognition literature has reported a number of studies on switching
nonlinear state space models, both theoretical and experimental. The specific forms
of the functions of qk[z(k −1),Λs] and rk′ [z(k′),Ωs′ ] and their parameterization are
determined by prior knowledge based on the understanding temporal properties of
speech. In particular, state equation 3.51 takes into account the temporal elasticity in
spontaneous speech and its correlation with the “spatial” properties in hidden speech
dynamics such as articulatory positions or vocal tract resonance frequencies. For
example, these latent variables do not oscillate within each phone-bound temporal
region. Observation Eq.3.52 incorporates knowledge about forward, nonlinear map-
ping from articulation to acoustics, an intensely studied subject in speech production
and speech analysis research [33–35, 76].

When nonlinear functions of qk[z(k − 1),Λs] and rk′ [z(k′),Ωs′ ] are reduced to
linear functions (and when synchrony between the two equations are eliminated),
the switching nonlinear dynamic system model is reduced to its linear counterpart,
or the switching linear dynamic system. This simplified system can be viewed as a
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hybrid of the standard HMM and linear dynamical systems, one associated with each
HMM state. The general mathematical description of the switching linear dynamic
system can be written as

z(k) = Asz(k − 1) + Bsws(k) (3.53)

o(k) = Csz(k) + vs(k). (3.54)

where subscript s denotes the left-to-right HMM state or the region of the switching
state in the linear dynamics. There has been an interesting set of work on the switch-
ing linear dynamic system applied to speech recognition. The early set of studies
have been reported in [95, 96] for generative speech modeling and for speech recog-
nition applications. More recent studies [53, 92] applied linear switching dynamic
systems to noise-robust speech recognition and explored several approximate infer-
ence techniques. The study reported in [106] applied another approximate inference
technique, a special type of Gibbs sampling, to a speech recognition problem.

3.6.3 The Speech Recognition Problem Using Generative Models
of HMM and Its Variants

Toward the end of this chapter, let us focus on a discussion on issues related to using
generativemodels such as the standardHMMand its extended versions just described
for discriminative classification problems such as speech recognition. More detailed
discussions on this important topic can be found in [41, 57, 127]. In particular, we
have omitted in this chapter the topic of discriminative learning of the generative
model of HMM, very important in the development of ASR based on the GMM-
HMM and related architectures. We leave the readers to a plethora of literature on
this topic in [2, 9, 17, 18, 48, 56, 63–67, 73, 90, 91, 99–102, 109, 112, 114, 115,
121–123, 125]. Another important topic, which we also omitted in this chapter, is the
use of the generative, GMM-HMM-based models for integrating the modeling of the
effects of noise in ASR. The ability to naturally carry out such integrated modeling
is one of the strengths of statistical generative models such as the GMM and HMM,
which we also leave the readers to the literature including many review articles [1,
30, 31, 36–38, 48, 49, 55, 58, 60, 75, 81–84, 92, 113].

A generative statistical model characterizes joint probabilities of input data and
their corresponding labels, which can be decomposed into the prior probability of
the labels (e.g., speech class tags) and the probability of class-conditioned data (e.g.,
acoustic features of speech). Via Bayes rule, the posterior probability of class labels
given the data can be easily determined and used as the basis for the decision rule for
classification. One key factor for the success of such generative modeling approach
in classification tasks is how good the model is to the true data distribution. The
HMM has been shown to be a reasonably good model for the statistical distribution
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of sequence data of speech acoustics, especially in its temporal characteristics. As
a result, the HMM has become a popular model for speech recognition since mid
1980s.

However, several weaknesses of the standard HMM as a generative model for
speech have been well understood, including, among others, the temporal indepen-
dence of speech data conditioned on each HMM state and lack of lawful correlation
between the acoustic features and ways in which speech sounds are produced (e.g.,
speaking rate and style). These weaknesses have motivated extensions of the HMM
in several ways, some discussed in this section. The main thread of these extensions
include the replacement of the Gaussian or Gaussian-mixture-like, independent and
identical distributions associated with each HMM state by more realistic, tempo-
rally correlated dynamic systems or nonstationary trajectory models, both of which
contain latent, continuous-valued dynamic structure.

During the development of these hidden trajectory and hidden dynamicmodels for
speech recognition, a number of machine learning techniques, notably approximate
variational inference and learning techniques [61, 79, 97, 116], have been usefully
applied with modifications and improvement to suit the speech-specific properties
and speech recognition applications. However, the success hasmostly been limited to
relatively small tasks.We can identify fourmain sources of difficulties (aswell as new
opportunities) in successfully applying these types of generativemodels to large-scale
speech recognition. First, scientific knowledge on the precise nature of the underlying
articulatory speech dynamics and its deeper articulatory control mechanisms is far
from complete. Coupled with the need for efficient computation in training and
decoding for speech recognition applications, such knowledgewas forced to be again
simplified, reducing the modeling power and precision further. Second, most of the
work in this area has been placed within the generative learning setting, having a goal
of providing parsimonious accounts (with small parameter sets) for speech variations
due to contextual factors and coarticulation. In contrast, the recent joint development
of deep learning methods, which we will cover in several later chapters of this book,
combines generative anddiscriminative learningparadigms andmakes use ofmassive
instead of parsimonious parameters. There appears to be a huge potential for synergy
of research here, especially in the light of the recent progress on variational inference
expected to improve the quality of deep, generative modeling and learning [8, 21,
68, 78, 93]. Third, most of the hidden trajectory or hidden dynamic models have
focusedononly isolated aspects of speechdynamics rooted in deephumanproduction
mechanisms, and have been constructed using relatively simple and largely standard
forms of dynamic systemswithout sufficient structure and effective learningmethods
free from unknown approximation errors especially during the inference step. This
latter deficiency can likely be overcomeby the improved variational learningmethods
just discussed.

Functionally speaking, speech recognition is a conversion process from the
acoustic data sequence of speech into a word or another linguistic-symbol sequence.
Technically, this conversion process requires a number of subprocesses including the
use of discrete time stamps, often called frames, to characterize the speech waveform
data or acoustic features, and the use of categorical labels (e.g., words, phones, etc.)
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to index the acoustic data sequence. The fundamental issues in speech recognition
lie in the nature of such labels and data. It is important to clearly understand the
unique attributes of speech recognition, in terms of both input data and output labels.
From the output viewpoint, ASR produces sentences that consist of a variable num-
ber of words. Thus, at least in principle, the number of possible classes (sentences)
for the classification is so large that it is virtually impossible to construct models
for complete sentences without the use of structure. From the input viewpoint, the
acoustic data are also a sequence with a variable length, and typically, the length
of data input is vastly different from that of label output, giving rise to the special
problem of segmentation or alignment that the “static” classification problems in
machine learning do not encounter. Combining the input and output viewpoints, we
state the fundamental problem of speech recognition as a structured sequence clas-
sification task, where a (relatively long) sequence of acoustic data is used to infer
a (relatively short) sequence of the linguistic units such as words. For this type of
structured pattern recognition, both the standard HMM and its variants discussed in
this chapter have captured some major attributes of the speech problem, especially
in the temporal modeling aspect, accounting for their practical success in speech
recognition to some degree. However, other key attributes of the problem have been
poorly captured by the many types of models discussed in this chapter. Most of the
remaining chapters in this book will be devoted to addressing this deficiency.

As a summary of this section, we bridged the HMM as a generative sta-
tistical model to practical speech problems including its modeling and classifi-
cation/recognition. We pointed out the weaknesses of the standard HMM as a
generative model for characterizing temporal properties of speech features, moti-
vating its extensions to several variants where the temporal independence of speech
data conditioned on each HMM state is replaced by more realistic, temporally corre-
lated dynamic systemswith latent structure. The state-space formulation of nonlinear
dynamic systemmodels provides an intriguingmechanism to connect to the recurrent
neural networks, which we will discuss in great detail later in Chap.13.
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Chapter 4
Deep Neural Networks

Abstract In this chapter, we introduce deep neural networks (DNNs)—multilayer
perceptrons with many hidden layers. DNNs play an important role in the modern
speech recognition systems, and are the focus of the rest of the book. We depict the
architecture of DNNs, describe the popular activation functions and training criteria,
illustrate the famous backpropagation algorithm for learningDNNmodel parameters,
and introduce practical tricks that make the training process robust.

4.1 The Deep Neural Network Architecture

A deep neural network (DNN)1 is a conventional multilayer perceptron (MLP) with
many (often more than two) hidden layers. See a comprehensive review of the DNN
in use as an acoustic model for speech recognition in [11]. Figure4.1 depicts a DNN
with a total of five layers that include an input layer, three hidden layers and an output
layer. For the sake of notation simplicity, we denote the input layer as layer 0 and
the output layer as layer L for an L + 1-layer DNN.

In the first L layers

v� = f
(

z�
)

= f
(

W�v�−1 + b�
)

, for 0 < � < L , (4.1)

where z� = W�v�−1 + b� ∈ R
N�×1, v� ∈ R

N�×1, W� ∈ R
N�×N�−1 , b� ∈ R

N�×1,
and N� ∈ R are, respectively, the excitation vector, the activation vector, the weight
matrix, the bias vector, and the number of neurons at layer �. v0 = o ∈ R

N0×1

is the observation (or feature) vector, N0 = D is the feature dimension, and
f (·) : R

N�×1 → R
N�×1 is the activation function applied to the excitation vec-

tor element-wise. In most applications, the sigmoid function

1 The term deep neural network first appeared in [21] in the context of speech recognition, but
was coined in [5] which converted the term deep belief network in the earlier studies into the more
appropriate term of deep neural network [4, 17, 24]. The term deep neural network was originally
introduced to mean multilayer perceptrons with many hidden layers, but was later extended to mean
any neural network with a deep structure.
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Fig. 4.1 An example deep
neural network with an input
layer, three hidden layers, and
an output layer
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σ (z) = 1

1 + e−z
(4.2)

or the hyperbolic tangent function

tanh (z) = ez − e−z

ez + e−z
(4.3)

is used as the activation function. Since the tanh (z) function is a rescaled version of
the sigmoid function, these two activation functions have the same modeling power.
However, the output range of σ (z) is (0, 1), which encourages sparse but, at the same
time, asymmetric activation values. On the other hand, the output range of tanh (z)
is (−1,+1), and thus the activation value is symmetric, which was believed to help
the model training [14]. Another popular activation function is the rectified linear
unit (ReLU) function

ReLU (z) = max (0, z) , (4.4)

which enforces sparse activations2 [7] and has very simple gradient as we will discus
in Sect. 4.2. Since sigmoid function is still the most popular activation functions used
by the practitioners, in all the following discussions we assume that the sigmoid
activation function is used unless otherwise noted.

The output layer needs to be chosen based on the tasks in hand. For the regression
tasks, a linear layer

vL = zL = WLvL−1 + bL (4.5)

2 The output of the sigmoid function can be very close to 0 but cannot reach 0, while the output of
the ReLU function can be exactly 0.
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is typically used to generate the output vector vL ∈ R
NL , where NL is the output

dimension.
For the multi-class classification tasks each output neuron represents a class i ∈

{1, . . . , C}, where C = NL is the number of classes. The value of the i th output
neuron vL

i represents the probability Pdnn (i |o) that the observation vector o belongs
to class i . To serve as a valid multinomial probability distribution, the output vector
vL should satisfy the requirements vL

i ≥ 0 and
∑C

i=1 vL
i = 1. This can be done by

normalizing the excitation with a softmax function

vL
i = Pdnn (i |o) = softmaxi

(
zL

)
= ezL

i

∑C
j=1 ezL

j

, (4.6)

where zL
i is the i th element of the excitation vector zL .

Given an observation vector o, the output of the DNN specified by the model
parameters {W, b} = {

W�, b�|0 < � ≤ L
}
can be calculated by computing the ac-

tivation vectors with Eq. (4.1) layer by layer from layer 1 to layer L − 1 and with
Eq. (4.5) for the regression tasks and Eq. (4.6) for the classification tasks to calcu-
late the output of the DNN. This process is often called forward computation and is
summarized in Algorithm 4.1.

Algorithm 4.1 DNN Forward Computation
1: procedure ForwardComputation(O)

� Each column of O is an observation vector
2: V0 ← O
3: for � ← 1; � < L; � ← � + 1 do � L is the total number of layers
4: Z� ← W�V�−1 + B� � Each column of B� is b�

5: V� ← f
(
Z�

) � f (.) can be sigmoid, tanh, ReLU, or other functions
6: end for
7: ZL ← WL VL−1 + BL

8: if regression then � regression task
9: VL ← ZL

10: else � classification task
11: VL ← softmax

(
ZL

) � Apply softmax column-wise
12: end if
13: Return VL

14: end procedure

4.2 Parameter Estimation with Error Backpropagation

It has been known since 1980s that an MLP with a sufficiently large hidden layer is
a universal approximator [12]. In other words, such an MLP can approximate any
mapping g : R

D → R
C from the input space R

D to the output space R
C . It is
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obvious that a DNN, which is an MLP with more than two hidden layers, can also
serve as a universal approximator.

The model parameters {W, b} in a DNN, however, are unknown and need to be
estimated from training samples S = {(om, ym) |0 ≤ m < M} for each task, where
M is the number of training samples, om is the mth observation vector and ym is the
corresponding desired output vector. This process is often called the training process
or the parameter estimation process, which can be specified by a training criterion
and a learning algorithm.

4.2.1 Training Criteria

The training criterion should be easy to evaluate and be highly correlated to the final
goal of the task so that the improvement in the training criterion would lead to the
improvement in the final evaluation score. Ideally, the model parameters should be
trained to minimize the expected loss

JEL = E (J (W, b; o, y)) =
∫

o

J (W, b; o, y) p (o) d (o) , (4.7)

where J (W, b; o, y) is the loss function given the model parameters {W, b}, the
observation o, and the corresponding output vector y, and p (o) is the probability
density function of observation o. Unfortunately, p (o) is typically unknown and
needs to be estimated from the training set, and J (W, b; o, y) is not well-defined
(the desired output vector is unknown) for samples unseen in the training set. For
this reason, the DNN model parameters are often trained to optimize the empirical
criteria.

There are two popular empirical training criteria in DNN model learning. For the
regression tasks, the mean square error (MSE) criterion

JMSE (W, b;S) = 1

M

M∑
m=1

JMSE
(
W, b; om, ym)

(4.8)

is typically used, where

JMSE (W, b; o, y) = 1

2

∥∥∥vL − y
∥∥∥2 = 1

2

(
vL − y

)T (
vL − y

)
. (4.9)

For the classification tasks, y is a probability distribution and the cross-entropy
(CE) criterion

JCE (W, b;S) = 1

M

M∑
m=1

JCE
(
W, b; om, ym)

(4.10)
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is often used, where

JCE (W, b; o, y) = −
C∑

i=1

yi log vL
i , (4.11)

yi = Pemp (i |o) is the empirical (observed in the training set) probability that the ob-
servation o belongs to class i , and vL

i = Pdnn (i |o) is the same probability estimated
from the DNN. Minimizing the cross- entropy criterion is equivalent to minimizing
the Kullback-Leibler divergence (KLD) between the empirical probability distribu-
tion and the probability distribution estimated from the DNN. In most cases, a hard
class label is used, or yi = I (c = i), where

I (x) =
{
1, if x is true

0, otherwise
(4.12)

is the indicator function, and c is the class label in the training set for observation
o. In these cases, the CE criterion specified by Eq. (4.11) is reduced to the negative
log-likelihood (NLL)

JNLL (W, b; o, y) = − log vL
c . (4.13)

4.2.2 Training Algorithms

Given the training criterion, the model parameters {W, b} can be learned with the
famous error backpropagation (BP) algorithm [19], which can be derived from the
chain rule used for gradient computation.3

In its simplest form, themodel parameters can be improved based on the first-order
gradient information as

W�
t+1 ← W�

t − ε�W�
t (4.14)

and
b�

t+1 ← b�
t − ε�b�

t , (4.15)

where W�
t and b�

t are the weight matrix and the bias vector at layer � after the t th
update,

�W�
t = 1

Mb

Mb∑
m=1

∇W�
t
J

(
W, b; om, ym)

(4.16)

3 Although the name backpropagation was coined in 1986 [19] the algorithm itself can be traced
back at least to 1969 [3] as a multistage dynamic system optimization method.
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and

�b�
t = 1

Mb

Mb∑
m=1

∇b�
t
J

(
W, b; om, ym)

(4.17)

are, respectively, the average weight matrix gradient and the average bias vector
gradient at iteration t estimated from the training batch consisted of Mb samples,
ε is the learning rate, and ∇x J is the gradient of J with regard to x.

The gradient of the training criterion with regard to the top-layer weight matrix
and bias vector depends on the criterion chosen. For the regression tasks, where the
MSE training criterion (Eq.4.9) and the linear output layer (Eq.4.5) are used, the
gradient with regard to the output layer weight matrix is

∇WL
t

JMSE (W, b; o, y) = ∇zL
t

JMSE (W, b; o, y)
∂zL

t

∂WL
t

= eL
t

∂
(

WL
t vL−1

t + bL
t

)

∂WL
t

= eL
t

(
vL−1

t

)T

=
(

vL
t − y

) (
vL−1

t

)T
, (4.18)

where we have defined the error signal at the output layer as

eL
t � ∇zL

t
JMSE (W, b; o, y)

= 1

2

∂
(
zL

t − y
)T (

zL
t − y

)
∂zL

t

=
(

vL
t − y

)
. (4.19)

Similarly,

∇bL
t

JMSE (W, b; o, y) =
(

vL
t − y

)
. (4.20)

For the classification tasks, where the CE training criterion (Eq.4.11) and the
softmax output layer (Eq. 4.6) are used, the gradient with regard to the output layer
weight matrix can be derived as

∇WL
t

JCE (W, b; o, y) = ∇zL
t

JCE (W, b; o, y)
∂zL

t

∂WL
t

= eL
t

∂
(

WL
t vL−1

t + bL
t

)

∂WL
t
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= eL
t

(
vL−1

t

)T

=
(

vL
t − y

) (
vL−1

t

)T
, (4.21)

where we have similarly defined the error signal at the output layer as

eL
t � ∇zL

t
JCE (W, b; o, y)

= −∂
∑C

i=1 yi log softmaxi
(
zL

t

)
∂zL

t

= ∂
∑C

i=1 yi log
∑C

j=1 ezL
j

∂zL
t

− ∂
∑C

i=1 yi log ezL
i

∂zL
t

= ∂ log
∑C

j=1 ezL
j

∂zL
t

− ∂
∑C

i=1 yi zL
i

∂zL
t

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ezL
1

∑C
j=1 e

zL
j

...

ezL
i

∑C
j=1 e

zL
j

...

ezL
C

∑C
j=1 e

zL
j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎣

y1
...

yi
...

yC

⎤
⎥⎥⎥⎥⎥⎥⎦

=
(

vL
t − y

)
.

Similarly,

∇bL
t

JCE (W, b; o, y) =
(

vL
t − y

)
. (4.22)

Note that ∇WL
t

JCE (W, b; o, y) (Eq. 4.21) appears to have the same form as
∇WL

t
JMSE (W, b; o, y) (Eq. 4.18). However, they are actually different since in the

regression case vL
t = zL

t and in the classification case vL
t = softmax

(
zL

t

)
.

Note also that for 0 < � < L ,

∇W�
t
J (W, b; o, y) = ∇v�

t
J (W, b; o, y)

∂v�
t

∂W�
t

= diag
(

f
′ (

z�
t

))
e�

t

∂
(

W�
t v�−1

t + b�
t

)

∂W�
t
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= diag
(

f
′ (

z�
t

))
e�

t

(
v�−1

t

)T

=
[

f
′ (

z�
t

)
• e�

t

] (
v�−1

t

)T
, (4.23)

∇b�
t
J (W, b; o, y) = ∇v�

t
J (W, b; o, y)

∂v�
t

∂b�
t

= diag
(

f
′ (

z�
t

))
e�

t

∂
(

W�
t v�−1

t + b�
t

)

∂b�
t

= diag
(

f
′ (

z�
t

))
e�

t

= f
′ (

z�
t

)
• e�

t , (4.24)

where e�
t � ∇v�

t
J (W, b; o, y) is the error signal at layer �, • is the element-wise

product, diag(x) is a square matrix whose diagonal equals to x, and f
′ (

z�
t

)
is the

element-wise derivative of the activation function. For the sigmoid activation func-
tion,

σ
′ (

z�
t

)
=

(
1 − σ

(
z�

t

))
• σ

(
z�

t

)
=

(
1 − v�

t

)
• v�

t . (4.25)

Similarly, for the tanh activation function

tanh
′ (
z�

t,i

)
= 1 −

[
tanh

(
z�

t,i

)]2 = 1 −
[
v�

t,i

]2
, (4.26)

or

tanh
′ (

z�
t

)
= 1 − v�

t • v�
t . (4.27)

For the ReLU activation function

ReLU
′ (
z�

t,i

)
=

{
1, if z�

t,i > 0

0, otherwise
(4.28)

or

ReLU
′ (

z�
t

)
= max

(
0, sgn

(
z�

t

))
, (4.29)

where sgn
(
z�

t

)
is the sign of z�

t applied element-wise. The error signal can be back-
propagated from top to bottom as
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eL−1
t = ∇vL−1

t
J (W, b; o, y)

= ∂zL
t

∂vL−1
t

∇zL
t

J (W, b; o, y)

=
∂

(
WL

t vL−1
t + bL

t

)

∂vL−1
t

eL
t

=
(

WL
t

)T
eL

t . (4.30)

For � < L ,

e�−1
t = ∇v�−1

t
J (W, b; o, y)

= ∂v�
t

∂v�−1
t

∇v�
t
J (W, b; o, y)

=
∂

(
W�

t v�−1
t + b�

t

)

∂v�−1
t

diag
(

f
′ (

z�
t

))
e�

t

=
(

W�
t

)T [
f

′ (
z�

t

)
• e�

t

]
. (4.31)

The key steps in the backpropagation algorithm is summarized in Algorithm 4.2.

4.3 Practical Considerations

The basic backpropagation algorithm described in Sect. 4.2 is theoretically simple.
However, learning a model efficiently and effectively requires taking consideration
many practical issues [1, 14].

4.3.1 Data Preprocessing

Data preprocessing plays an important role in many machine learning algorithms.
The twomost popular preprocessing techniques are per-sample feature normalization
and global feature standardization.

If the mean of each sample reflects a variation that is irrelevant to the problem
in hand, this mean should be subtracted from the feature to reduce the variability
in the final feature fed to the DNN. For example, subtracting the mean intensity of
an image can reduce the variability introduced by the brightness. In the handwriting
character recognition tasks, normalizing the image center can reduce the variability
caused by the shifted character position. In speech recognition, the cepstral mean
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Algorithm 4.2 Backpropagation Algorithm
1: procedure Backpropagation(S = {(om , ym) |0 ≤ m < M})

� S is the training set with M samples
2: Randomly initialize

{
W�

0, b�
0

}
, 0 < � ≤ L � L is the total number of layers

3: while Stopping Criterion Not Met do
� Stop if reached max iterations or the training criterion improvement is small

4: Randomly select a minibatch O, Y with Mb samples.
5: Call ForwardComputation(O)

6: EL
t ← VL

t − Y � Each column of EL
t is eL

t
7: GL

t ← EL
t

8: for � ← L; � > 0; � ← � − 1 do

9: ∇W�
t

← G�
t

(
v�−1

t

)T
10: ∇b�

t
← G�

t

11: W�
t+1 ← W�

t − ε
Mb

∇W�
t � Update W

12: b�
t+1 ← b�

t − ε
Mb

∇b�
t � Update b

13: E�−1
t ← (

W�
t

)T
G�

t � Error backpropagation
14: if � > 1 then
15: G�−1

t ← f
′ (

Z�−1
t

)
• E�−1

t

16: end if
17: end for
18: end while
19: Return dnn = {

W�, b�
}
, 0 < � ≤ L

20: end procedure

normalization (CMN) [15] technique, which subtracts the per-utterance mean of the
MFCC features can reduce acoustic channel distortions. Using CMN as an example,
the per-sample normalization can be carried out by first estimating the per-utterance
mean

μ̄i = 1

T

T∑
t=1

ot
i , (4.32)

for each dimension i , where T is the total number of frames in the utterance, and
then subtracting the mean from all frames in the utterance as

ōt
i = ot

i − μ̄i . (4.33)

The goal of global feature standardization is to scale the data along each dimension
using a global transformation so that the final data vectors lie in the similar range.
For example, in image processing, we often rescale the pixel values in the range of
[0, 255] to the range of [0, 1]. For real-valued features such as the MFCC and the
log filter-bank feature in speech recognition tasks, each dimension of the feature is
often standardized to have zero-mean and unit-variance using a global transformation
(e.g., in [5]). The global transformation in both cases is estimated from the training
data only and it is then applied to both training and test sets. Given the training set
S = {(om, ym) |0 ≤ m < M} (which may have been normalized per sample), we can
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calculate the average value

μi = 1

M

M∑
m=1

om
i (4.34)

and the standard deviation

σi =
√√√√ 1

M

M∑
m=1

(
om

i − μi
)2 (4.35)

for each dimension i . All samples in both training and test sets can be standardized
as

õm
i = om

i − μi

σi
. (4.36)

The global feature standardization described above is useful because the later
processing steps often performbetterwhen eachdimension is scaled to a similar range
of numerical values [14]. For example, in DNN training, by standardizing features
we can use the same learning rate across all weight dimensions and still get a good
model. Without feature standardization, the energy component or the first MFCC
component c0 would overshadow the other components and dominate the learning
process unless learning algorithms (such asAdaGrad [6]), which automatically adjust
learning rate for each separate dimension, are used.

4.3.2 Model Initialization

The learning algorithm specified in Sect. 4.2 starts from an initial model. Since the
DNN is a highly nonlinear model and the training criterion with regard to the model
parameters is nonconvex, the initial model can greatly affect the resulting model.

There are many heuristic tricks in initializing the DNN model. Most of these
tricks are based on two considerations. First, the weights should be initialized so
that each neuron operates in the linear range of the sigmoid function at the start of
the learning. If weights were all very large, many neurons would saturate (close to
zero or one) and the gradients would be very small according to Eq. (4.25). When
the neurons operate in the linear range, instead, the gradients are large enough (close
to the maximum value of 0.25) that learning can proceed effectively. Note that the
excitation value depends on both the input values and the weights. When the input
features are standardized as described in Sect. 4.3.1, determining the initial weights
can become easier. Second, it is important to initialize the parameters randomly.
This is because neurons in the DNNs are symmetric and interchangeable. If all the
model parameters have identical values, all the hidden layer neurons will have the
same output value and detect the same feature patterns in the lower layers. Random
initialization serves the purpose of symmetry breaking.
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LeCun and Bottou [14] suggested to draw values from a zero-mean Gaussian
distribution with standard deviation σW�+1 = 1√

N�
to initialize the weights in layer �

as defined in Eq. (4.1), where N� is the number of connections feeding into the node.
For the DNNs used in speech recognition tasks, where each hidden layer has 1,000–
2,000 neurons, we have found that initializing the weight matrices by drawing from
a Gaussian distribution N (w; 0, 0.05) or from a uniform distribution in the range
of

[−0.05, 0.05
]
performs very well. The bias vectors b� can be simply initialized

to zero.

4.3.3 Weight Decay

As in many machine learning algorithms, overfitting can be a problem especially
since the number of parameters in a DNN is huge compared to many other learning
machines. Overfitting happens because we are interested in minimizing the expected
loss (4.7), but instead we actually minimize the empirical losses defined on the
training set.

The simplest way to control overfitting is to regularize the training criterion so
that the model parameters will not be tuned to fit the training data too well. The most
widely used regularization terms include

R1 (W) = ‖vec (W)‖1 =
L∑

�=1

∥∥∥vec
(

W�
)∥∥∥

1
=

L∑
�=1

N�∑
i=1

N�−1∑
j=1

|W�
i j | (4.37)

that is based on the L1 norm, and

R2 (W) = ‖vec (W)‖22 =
L∑

�=1

∥∥∥vec
(

W�
)∥∥∥2

2
=

L∑
�=1

N�∑
i=1

N�−1∑
j=1

(
W�

i j

)2
(4.38)

that is based on the L2 norm, where Wi j is the (i, j)-th value in the matrix W,
vec

(
W�

) ∈ R[N�×N�−1]×1 is the vector generated by concatenating all the columns
in the matrix W�, and

∥∥vec (
W�

)∥∥
2 equals to

∥∥W�
∥∥

F—the Frobenious norm of the
matrix W�. These regularization terms are often called weight decay in the neural
network literature.

When regularization terms are included, the training criterion becomes

J̈ (W, b;S) = J (W, b;S) + λR (W) (4.39)

where J (W, b;S) is either JMSE (W, b;S) or JCE (W, b;S) that optimizes the
empirical loss on the training set S, R (W) is either R1 (W) or R2 (W) described
above, and λ is an interpolation weight, which is sometimes called regularization
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weight. Note that

∇W�
t
J̈ (W, b; o, y) = ∇W�

t
J (W, b; o, y) + λ∇W�

t
R (W) (4.40)

∇b�
t
J̈ (W, b; o, y) = ∇b�

t
J (W, b; o, y) (4.41)

where
∇W�

t
R1 (W) = sgn

(
W�

t

)
, (4.42)

and
∇W�

t
R2 (W) = 2W�

t . (4.43)

Weight decay often helps when the training set size is small compared to the num-
ber of parameters in the DNN. Since there are typically over one million parameters
in the weight matrices in typical DNNs used in the speech recognition tasks, the
interpolation weight λ should be small (often in the range of 10−4) or even 0 when
the training set size is large.

4.3.4 Dropout

Weight decay is one way to control the overfitting. Another popular approach is
dropout [10]. The basic idea of dropout is to randomly omit a certain percentage
(e.g., α) of the neurons in each hidden layer for each presentation of the samples
during training. This means during the training each random combination of the
(1− α) remaining hidden neurons needs to perform well even in the absence of the
omitted neurons. This requires each neuron to depend less on other neurons to detect
patterns.

Alternatively, dropout can be considered a technique that adds random noise to
the training data. This is because each higher-layer neuron gets input from a random
collection of the lower-layer neurons. The excitation received by each neuron is
different even if the same input is fed into the DNN. With dropout, DNNs need to
waste some of the weights to remove the effect of the random noise introduced. As
such, dropout essentially reduces the capacity of the DNN, and thus can improve
generalization of the resulting model.

When a hidden neuron is dropped out, its activation is set to 0 and so no error
signal will pass through it. This means that other than the random dropout operation,
no other changes to the training algorithm are needed to implement this feature. At
the test time, however, instead of using a random combination of the neurons at each
hidden layer, we use the average of all the possible combinations. This can be easily
accomplished by discounting all the weights involved in dropout training by (1− α),
and then using the resulting model as a normal DNN (i.e., without dropout). Thus,
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dropout can also be interpreted as an efficient way of performing (geometric) model
averaging (similar to bagging) in the DNN framework.

A slightly different implementation is to divide each activation by (1− α) be-
fore neurons are dropped in the training. By doing so the weights are automatically
discounted by (1− α), and thus no weight compensation is needed when the model
is used for testing. Another benefit of this approach is that we may apply different
dropout rates at different epoch in the training.Our experience indicates that a dropout
rate of 0.1–0.2 often helps to improve the recognition rate. An intelligently designed
training schedule that uses a large dropout rate (e.g., 0.5) initially and reduces the
dropout rate gradually can further improve the performance. This is because the
model trained with a larger dropout rate can be considered as the seed model of that
trained with a smaller dropout rate. Since the objective function associated with the
larger dropout rate is smoother, it is less likely to trap into a very bad local optimum.

During the dropout training, we need to repeatedly sample a random subset of acti-
vations at each layer. This would slow down the training significantly. For this reason,
the speed of the random number generation and sampling code is critical to reducing
the training time. Alternatively, a fast dropout training algorithm proposed in [23]
can be used. The key idea of this algorithm is to sample from or integrate a Gaussian
approximation, instead of doing Monte Carlo sampling. This approximation, justi-
fied by the central limit theorem and empirical evidence, provides significant speedup
and more stability. This technique can be extended to integrate out other types of
noise and transformations.

4.3.5 Batch Size Selection

The parameter update formulas Eqs. (4.14) and (4.15) require the calculation of the
empirical gradient estimated from a batch of training samples. The choice of the
batch size will affect both the convergence speed and the resulting model.

The simplest and obvious choice of the batch is the whole training set. If our
only goal is to minimize the empirical loss on the training set, the gradient estimated
from the whole training set is the true gradient (i.e., the variance is zero). Even if our
goal is to optimize the expected loss the gradient estimated from the whole training
set still has smaller variance than that estimated from any subset of the training
data. This approach, often referred to as batch training, has several advantages:
First, the convergence property of the batch training is well-known. Second, many
accelerating techniques such as conjugate gradient [9] and L-BFGS [16] work best
in batch training. Third, batch training can be easily parallelized across computers.
Unfortunately, batch training requires a complete pass through the entire dataset
before model parameters are updated, and is thus not efficient in many large scale
problems even though embarrassing parallelization is possible.

Alternatively, we can use the stochastic gradient descent (SGD) [2] technique,
which is sometimes referred to as online leaning in the machine learning literature.
SGD updates the model parameters based on the gradients estimated from a single
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training sample. If the sample is i.i.d. (independently and identically distributed),
which is easy to guarantee if we draw the sample from the training set following the
uniform distribution, we can show that

E (∇ Jt (W, b; o, y)) = 1

M

M∑
m=1

∇ J
(
W, b; om, ym)

. (4.44)

In other words, the gradient estimated from the single sample is an unbiased es-
timation of the gradient on the whole training set. However, the variance of the
estimation is

V (∇ Jt (W, b; o, y)) = E

[
(x − E (x)) (x − E (x))T

]

= E

(
xxT

)
− E (x)E (x)T

= 1

M

M∑
m=1

xmxTm − E (x)E (x)T, (4.45)

which is nonzero unless all samples are identical; i.e., ∇ Jt (W, b; o, y) =
E (∇ Jt (W, b; o, y)), where for simplicity we have defined x � ∇ Jt (W, b; o, y).
Because this estimate of the gradient is noisy, the model parameters may not move
precisely down the gradient at each iteration. This seemingly drawback, however,
is actually an important advantage of the SGD algorithm over the batch learning
algorithm. This is because DNNs are highly nonlinear and nonconvex. The objective
function contains many local optima, many of which are very poor. Batch learning
will find the minimum of whatever basin the model parameters are initially in and
results in a model that is highly dependent on the initial model. The SGD algorithm,
however, due to the noisy gradient estimation, can jump out of the poor local optima
and enter a better basin. This property is similar to the simulated annealing [13],
which allows the model parameters to move in a direction that is inferior locally but
superior globally.

SGD is also oftenmuch faster than batch learning especially on large datasets. This
is due to two reasons. First, typically there are many similar, sometimes redundant,
samples in the large datasets. Estimating the gradient by going through the whole
dataset is thus waste of computation. Second, and more importantly, in the SGD
training, one can make quick updates after seeing each sample. The new gradient is
estimated based on the new model instead of the old model and so can move more
quickly toward finding the best model.

The SGD algorithm, however, is difficult to parallelize even on the same com-
puter. In addition, it cannot fully converge to the local minimum due to the noisy
estimation of the gradient. Instead, it will fluctuate around the minimum. The size
of the fluctuation depends on the learning rate and the amplitude of the gradient
estimation variance. Although this fluctuation can sometimes reduce overfitting, it
is not desirable in many cases.
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A compromise between batch learning and the SGD algorithm is minibatch train-
ing, which estimates the gradient based on a small batch of randomly drawn training
samples. It is easy to show that the gradient estimated from the minibatch is also
unbiased and the variance of the estimation is smaller than that in the SGD algorithm.
Minibatch training allows us to easily parallelize within the minibatch, and thus can
converge faster than SGD. Since we prefer large gradient estimation variance in the
early stage of the training to quickly jump out of poor local optima and smaller
variance at the later stage to settle down to the minimum, we can choose smaller
minibatch size initially and large ones in the later stage. In speech recognition tasks,
we have found that a better model can be learned if we use 64–256 samples in early
stages and 1,024–8,096 samples in later stages. An even smaller batch size is pre-
ferred at the very initial stage when a deeper network is to be trained. The minibatch
size may be automatically determined based on the gradient estimation variance.
Alternatively, the batch size can be determined by searching on a small subset of
samples in each epoch [8, 20].

4.3.6 Sample Randomization

Sample randomization is irrelevant to the batch training since all samples are used to
estimate the gradient. However, it is very important for SGD and minibatch training.
This is because to get an unbiased estimate of the gradient the samples have to be
IID. Heuristically, if successive samples are not randomly drawn from the training
set (e.g., all belong to the same speaker), the model parameters will likely to move
along the similar direction for too long.

If the whole training set can be loaded into thememory, sample randomization can
be easily done by permuting an index array. Samples can then be drawn one by one
according to the permuted index array. Since the index array is typicallymuch smaller
than the features, this would cost less than permuting the feature vectors themselves,
especially if each data pass requires a different randomization order. This trick also
guarantees that each sample will be presented to the training algorithm once for each
data pass, and thus will not affect the data distribution. This property will guarantee
that the model learned is consistent.

If the training set is huge, which is typically the case in speech recognition, we
cannot load the whole training set into memory. In that case, we can load a large
chunk (typically 24–48h of speech or 8.6–17.2M samples) of the data into memory
each time using a rolling window and randomize inside the window. If the training
data are from different sources (e.g., different languages), randomizing the utterance
list files before feeding them into the DNN training tool also will help.
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4.3.7 Momentum

It is well-known that the convergence speed can be improved if the model update is
based on all the previous gradients (more global view) instead of only the current one
(local view). Nesterov’s accelerated gradient algorithm [18], which is proved to be
optimal for the convex condition, is an example of this trick. In the DNN training, this
is typically achieved with a simple technique named momentum. When momentum
is applied, Eqs. (4.16) and (4.17) are replaced with

�W�
t = ρ�W�

t−1 + (1 − ρ)
1

Mb

Mb∑
m=1

∇W�
t
J̈

(
W, b; om, ym)

(4.46)

and

�b�
t = ρ�b�

t−1 + (1 − ρ)
1

Mb

Mb∑
m=1

∇b�
t
J̈

(
W, b; om, ym)

(4.47)

where ρ is the momentum factor, which typically takes value of 0.9–0.99 when
SGD or minibatch training is used.4 Momentum smoothes the parameter update
and reduces the variance of the gradient estimation. Practically, it can reduce the
oscillation problems commonly seen in the regular backpropagation algorithm when
the error surface has a very narrow minimum, and thus speed up the training.

The above definition of momentum works great when the minibatch size is
the same. However, sometimes we may want to use variable minibatch sizes. For
example, we may want to use smaller minibatch initially, and then larger minibatch
later as discussed in Sect. 4.3.5. In the sequence-discriminative training, which we
will discuss in Chap. 8, each minibatch may have a different size since each utterance
is of different length. Under these conditions, the above definition of momentum is
no longer valid. Since the momentum can be considered as a finite impulse response
(FIR) filter, we can define the momentum at the sample level as ρs and derive the
momentum for different minibatch size Mb as

ρ = exp (Mbρs) . (4.48)

4.3.8 Learning Rate and Stopping Criterion

One of the difficulties in training a DNN is selecting an appropriate learning strategy.
It has been shown in theory that when the learning rate is set to

4 In practice, we have found out that we may achieve slightly better result if we only use momentum
after the first epoch.

http://dx.doi.org/10.1007/978-1-4471-5779-3_8
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ε = c

t
, (4.49)

where t is the number of samples presented and c is a constant, SGD converges
asymptotically [2]. In practice, however, this annealing schemeconverges very slowly
since the learning rate will quickly become very small.

Note that it is the combination of the learning rate and the batch size that affects
the learning behavior. As we have discussed in Sect. 4.3.5 that a smaller batch size
should be used in the first several data passes and a larger batch size should be used
in the later data passes. Since the batch size is variable, we can define a per-sample
learning rate

εs = ε

Mb
, (4.50)

and change the model parameter update formulas to

W�
t+1 ← W�

t − εs�W̃�
t (4.51)

b�
t+1 ← b�

t − εs�b̃�
t (4.52)

where

�W̃�
t = ρ�W�

t−1 + (1 − ρ)

Mb∑
m=1

∇W�
t
J̈

(
W, b; om, ym)

(4.53)

and

�b̃�
t = ρ�b�

t−1 + (1 − ρ)

Mb∑
m=1

∇b�
t
J̈

(
W, b; om, ym)

. (4.54)

This change also reduces onematrix division compared to using the original definition
of the learning rate.

With this newupdate formulas,we can determine the learning strategy empirically.
We first decide on a batch size and a large learning rate. We then run the training for
hundreds of minibatchs, which typically takes several minutes on multi-core CPUs
or GPUs. We monitor the training criterion on these minibatchs and reduce the batch
size, learning rate, or both so that the product of εs Mb is halved until the training
criterion is obviously improved.We then divide this learning rate by two and use it as
the initial learning rate. We run through a large subset of the training set and increase
εs Mb by four to eight folds. Note that since at this stage the model parameters are
already adjusted to a relatively good location, increasing εs Mb will not lead to diverge
but improve the training speed. This procedure can be automated as in [8].

We found two strategies useful in determining the rest learning scheme. The
first strategy is to double the batch size and reduce the learning rate by fourfolds
whenever the training criterion fluctuates as measured on a large training subset or
on a development set, and stop the training when the learning rate is smaller than
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a threshold or the preset number of data passes is reached. The second strategy
is to reduce the learning rate to a very small number after the training criterion
fluctuates and stop the training when the fluctuation happens again on either the
training or the development set. For the speech recognition tasks in which the models
are learned from scratch, we found that εs of 0.8e−4 and 0.3e−3 for deep and shallow
networks, respectively, for the first phase, 1.25e−2 for the second phase, and 0.8e−6

for the third phase worked very well in practice. The hyper-parameter searching can
also be automated using random search techniques [1] or Bayesian optimization
techniques [22].

4.3.9 Network Architecture

Network architecture can be considered as another hyper “parameter” that needs
to be determined. Since each layer can be considered as a feature extractor of the
previous layer, the number of neurons at each layer should be large enough to capture
the essential patterns. This is especially important at several lower layers since the
first-layer features are more variable and it requires more neurons to model the
patterns than other layers. However, if the layer size is too large, it is easier to overfit
to the training data. Basically, the wide, shallow models are easier to overfit and
the deep, narrow models are easier to underfit. Actually, if one of the layers is small
(often called bottleneck) the performancewill be significantly deteriorated especially
when the bottleneck layer is close to the input layer. If each layer has the same
number of neurons, adding more layers may also convert the model from overfitting
to underfiting. This is because additional layers impose additional constraints to the
model parameters. Given this observation, we can optimize the number of neurons
at each layer on a one-hidden-layer network first. We then stack more layers with the
same hidden layer size. In the speech recognition tasks, we have found that 5–7 layer
DNNs with 1,000–3,000 neurons at each layer worked very well. It is often easier to
find a good configuration on a wide and deep model than a narrow and shallow one.
This is because there are many good local optima that perform similarly on a wide
and deep model.

4.3.10 Reproducibility and Restartability

In the DNN training, the model parameters are initialized randomly and the training
samples are also fed into the trainer in random orders. This inevitably will raise the
concern about reproducibility of the results of the training. If our goal is to compare
two algorithms or models, we can run the experiments multiple times, each with a
new random seed, and report the average result and the standard deviation. Under
many other conditions, however, we want to get exactly the same model and test
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result when we run the trainer twice. This can be achieved by always using the same
random seed when generating the initial model and permuting the training samples.

When the training set is large, it is often desirable to stop the training in the
middle and continue the training from the last check-point. Some mechanisms need
to be built into the training tool to guarantee that restarting from a check-point will
generate the exact same result if the training never interrupted. A simple trick is
to save all the necessary information, including model parameters, current random
number, parameter gradient, momentum, and so on in the check-point file. Another
working approach that requires saving less data is to reset all learning parameters
after each check-point.
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Chapter 5
Advanced Model Initialization Techniques

Abstract In this chapter,we introduce several advanced deep neural network (DNN)
model initialization or pretraining techniques. These techniques have played impor-
tant roles in the early days of deep learning research and continue to be useful under
many conditions. We focus our presentation of pretraining DNNs on the following
topics: the restricted Boltzmann machine (RBM), which by itself is an interesting
generative model, the deep belief network (DBN), the denoising autoencoder, and
the discriminative pretraining.

5.1 Restricted Boltzmann Machines

The restricted Boltzmann machine (RBM) [20] is a stochastic generative neural net-
work. As its name indicates, it is a variant of the Boltzmann machine. It is essentially
an undirected graphicalmodel constructed of a layer of stochastic visible neurons and
a layer of stochastic hidden neurons. The visible and hidden neurons form a bipartite
graph with no visible–visible or hidden–hidden connections as shown in Fig. 5.1.
The hidden neurons usually take binary values and follow Bernoulli distributions.
The visible neurons may take binary or real values depending on the input types.

An RBM assigns an energy to every configuration of visible vector v and hidden
vector h. For the Bernoulli-Bernoulli RBM, in which v ∈ {0, 1} Nv×1 and h ∈
{0, 1} Nh×1, the energy is

E(v, h) = −aTv − bTh − hTWv, (5.1)

where Nv and Nh are the number of visible and hidden neurons, respectively,
W ∈ R

Nh×Nv is the weight matrix connecting visible and hidden neurons, and
a ∈ R

Nv×1 and b ∈ R
Nh×1 are, respectively, the visible and hidden layer bias vectors.

If the visible neurons take real values, v ∈ R
Nv×1, the RBM, which is often called

Gaussian-Bernoulli RBM, assigns the energy

E(v, h) = 1

2
(v − a)T(v − a) − bTh − hTWv (5.2)

to each configuration (v, h).
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Fig. 5.1 An example of
restricted Boltzmann
machines

j

i
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Each configuration is also associated with a probability

P(v, h) = e−E(v,h)

Z
(5.3)

that is defined upon the energy, where Z = ∑
v,h e−E(v,h) is the normalization factor

known as the partition function.
In the RBM, the posterior probabilities P(v|h) and P(h|v) can be efficiently

calculated thanks to the lack of direct connections within visible and hidden layers.
For example, for the Bernoulli-Bernoulli RBM,

P(h|v) = e−E(v,h)

∑
h̃ e−E(v,h̃)

= eaTv+bTh+hTWv

∑
h̃ eaTv+bTh̃+h̃TWv

=
∏

i ebi hi +hi Wi,∗v

∑
h̃1

. . .
∑

h̃N

∏
i ebi h̃i +h̃i Wi,∗v

=
∏

i ebi hi +hi Wi,∗v

∏
i
∑

h̃i
ebi h̃i +h̃i Wi,∗v

=
∏

i

ebi hi +hi Wi,∗v

∑
h̃i

ebi h̃i +h̃i Wi,∗v

=
∏

i

P(hi |v), (5.4)

whereWi,∗ denotes the i th rowofW. Equation (5.4) indicates that the hidden neurons
are conditionally independent given the visible vector. Since hi ∈ {0, 1} takes binary
values,

P(hi = 1|v) = ebi1+1Wi,∗v

ebi1+1Wi,∗v + ebi0+0Wi,∗v = σ(bi + Wi,∗v) (5.5)
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or

P(h = 1|v) = σ(Wv + b), (5.6)

where σ(x) = (1 + e−x )−1 is the element-wise logistic sigmoid function. For the
binary visible neuron case, a completely symmetric derivation lets us obtain

P(v = 1|h) = σ(WTh + a). (5.7)

For the Gaussian visible neurons, the conditional probability P(h = 1|v) is the
same as Eq. (5.6); however, P(v|h) is estimated as

P(v|h) = N (v; WTh + a, I ). (5.8)

where I is the appropriate identity covariance matrix.
Note that Eq. (5.6) has the same form as Eq. (4.1) no matter whether binary or

real-valued inputs are used. This allows us to use the weights of an RBM to initialize
a feedforward neural network with sigmoidal hidden units because we can equate the
inference for RBM hidden units with forward computation in a deep neural network
(DNN).

5.1.1 Properties of RBMs

An RBM can be used to learn a probability distribution over its set of inputs. Before
writing an expression for the probability assignedby anRBMto somevisible vectorv,
it is convenient to define a quantity known as the free energy:

F(v) = − log

(∑
h

e−E(v,h)

)
. (5.9)

Using F(v), we can write the marginal probability P(v) as

P(v) =
∑

h

P(v, h)

=
∑

h

e−E(v,h)

Z

=
∑

h e−E(v,h)

Z

= e−F(v)∑
ν e−F(ν)

. (5.10)
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If the visible neurons take real values, the marginal probability density function is

p0(v) = e− 1
2 (v−a)T(v−a)

Z0
(5.11)

when the RBM has no hidden neuron. This is a unit-variance Gaussian distribution
centered at vector a as shown in Fig. 5.2a. Note that

pn(v) =
∑

h e−En(v,h)

Zn

=
∏n

i=1
∑1

hi =0 ebi hi +hi Wi,∗v

Zn

=
∏n−1

i=1
∑1

hi =0 ebi hi +hi Wi,∗v
(
1 + ebn+Wn,∗v

)
Zn

= pn−1(v)
Zn−1

Zn

(
1 + ebn+Wn,∗v

)

= pn−1(v)
Zn−1

Zn
+ Pn−1(v)

Zn−1

Zn
ebn+Wn,∗v, (5.12)

where n is the number of hidden neurons. This means that when a new hidden neuron
is added while other model parameters are fixed, the original distribution is scaled
and a copy of the same distribution is placed along the direction determined by Wn,∗.
Figure5.2b–d shows the marginal probability density distribution with 1–3 hidden
neurons. It is obvious that RBMs represent the visible inputs as a Gaussian mixture
model with exponential number of unit-varianceGaussian components. Compared to
the conventional Gaussian mixture models (GMMs) RBMs use much more mixture
components. However, the conventional GMMs use different variances for different

n=0 n=1W1,*

n=2

W2,* W2,*

n=3

W3,* W3,*

W3,* W3,*

(a) (b)

(c) (d)

Fig. 5.2 Marginal probability density function represented by a Gaussian-Bernoulli RBM
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Fig. 5.3 Use RBMs to learn word co-occurrence relationship. Each visible neuron represents a
word and takes value 1 if the word occurred in the document and takes value 0 otherwise. After the
training, each hidden neuron represents a topic

Gaussian components to represent the distribution. Since Gaussian-Bernoulli RBMs
can represent distributions of real-valued data similar to GMMs, RBMs can be used
in generative models in place of GMMs. For example, RBMs have been successfully
used in some recent text-to-speech (TTS) systems [14].

Given the training samples that are represented with visible neurons, the RBMcan
learn the correlation between different dimensions of the features. For example, if the
visible neurons represent the words occur in a document as shown in Fig. 5.3, after
the training, the hidden neurons will represent topics. Each hidden neuron groups
words that occur together in the documents while each word links to the topics
in which it may occur. The intervisible neuron correlation can thus be represented
through the hidden neurons they connect to. An advanced topic model that exploits
this property can be found in [11]. Since the hidden layer can be considered as a
different representation of the raw feature, which is also represented by the visible
layer, the RBM can also be used to learn feature representations [3].

Although the neurons are separated into visible and hidden ones in our description,
the visible neurons may not be observable and the hidden neurons may be observable
in some applications. For example, if the visible layer represents the users and the
hidden layer represents the movies, the link between the visible neuron A and hidden
neuron i may represent “user A likes movie i .” In many applications, such as in the
collaborative filtering [16], some pairs are observable but others are not. The RBM
learned from the training set can be used to predict the pairs that are not observable
and can recommend movies to the users.

5.1.2 RBM Parameter Learning

To train an RBM, we perform stochastic gradient descent (SGD) [2] to minimize the
negative log likelihood (NLL)

JNLL (W, a, b; v) = − log P(v) = F(v) + log
∑

v

e−F(v) (5.13)
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and update the parameters as

Wt+1 ← Wt − ε�Wt , (5.14)

at+1 ← at − ε�at , (5.15)

bt+1 ← bt − ε�bt , (5.16)

where ε is the learning rate, and

�Wt = ρ�Wt−1 + (1 − ρ)
1

Mb

Mb∑
m=1

∇Wt JNLL
(
W, a, b; vm)

, (5.17)

�at = ρ�at−1 + (1 − ρ)
1

Mb

Mb∑
m=1

∇at JNLL
(
W, a, b; vm)

, (5.18)

�bt = ρ�bt−1 + (1 − ρ)
1

Mb

Mb∑
m=1

∇bt JNLL
(
W, a, b; vm)

, (5.19)

where ρ is the momentum parameter, Mb is the minibatch size, and ∇Wt JNLL
(W, a, b; vm), ∇at JNLL (W, a, b; vm), and ∇bt JNLL (W, a, b; vm) are the gradients
of the NLL criterion on model parameters W, a, and b, respectively.

Unlike DNN, in an RBM the gradient of the log likelihood of the data is not
feasible to compute exactly. The general form of the derivative of the NLL with
regard to model parameters is

∇θ JNLL (W, a, b; v) = −
[〈

∂ E(v, h)

∂θ

〉
data

−
〈
∂ E(v, h)

∂θ

〉
model

]
, (5.20)

where θ is some model parameter, and 〈x〉data and 〈x〉model are the expectation of
x estimated from the data and from the model, respectively. In particular, for the
visible-hidden weight updates we have:

∇w ji JNLL (W, a, b; v) = − [〈vi h j 〉data − 〈vi h j 〉model
]
. (5.21)

The first expectation, 〈vi h j 〉data, is the frequency with which the visible neuron
vi and the hidden neuron h j fire together in the training set and 〈vi h j 〉model is that
same expectation under the distribution defined by the model. Unfortunately, the
term 〈.〉model takes exponential time to compute exactly when the hidden values are
unknown, so we are forced to use approximated methods.

The most widely used efficient approximated learning algorithm for the RBM
training is contrastive divergence (CD) as described in [9]. The one-step contrastive
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Fig. 5.4 Illustration of the contrastive divergence algorithm

divergence approximation for the gradientwith regard to the visible-hiddenweights is

∇w ji JNLL (W, a, b; v) = − [〈vi h j 〉data − 〈vi h j 〉∞
]

≈ − [〈vi h j 〉data − 〈vi h j 〉1
]
, (5.22)

where 〈.〉∞ and 〈.〉1 denote the expectation computed with samples generated by
running the Gibbs sampler infinite steps and one step, respectively. The computa-
tion of 〈vi h j 〉data and 〈vi h j 〉1 is often referred as the positive and negative phases,
respectively.

Figure5.4 illustrates the sampling process and the contrastive divergence algo-
rithm. At the first step, the Gibbs sampler is initialized at a data sample. It then
generates a hidden sample from the visible sample based on the posterior proba-
bility P(h|v) defined by Eq. (5.6). This hidden sample is further used to generate
a visible sample based on the posterior probability P(v|h) defined by Eq. (5.7) for
the Bernoulli-Bernoulli RBMs or Eq. (5.8) for the Gaussian-Bernoulli RBMs. This
process continues and may run many steps. If the Gibbs sampler runs for infinite
steps the true expectation 〈vi h j 〉model can be estimated from the samples generated
after the burn-in stage as

〈vi h j 〉model ≈
1

N

Nburn+N∑
n=Nburn+1

vn
i hn

j , (5.23)

where Nburn is the number of steps needed for burn-in and N is the number (huge)
of samples generated after the burn-in stage. However, running Gibbs sampler many
steps is not efficient. Instead, we can replace it with a very rough estimate 〈vi h j 〉1
by running the Gibbs sampler just one step and estimate 〈vi h j 〉model as

〈vi h j 〉model ≈ 〈vi h j 〉1 = v1i h1
j . (5.24)

However, 〈vi h j 〉1 has high variance. To reduce the variance, we can estimate
〈vi h j 〉model based on

h0
∼ P(h|v0), (5.25)

v1 = E(v|h0) = P(v|h0), (5.26)
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h1 = E(h|v1) = P(h|v1), (5.27)

where∼means sample from, v0 is a sample from the training set, and the expectation
operator is applied element-wise. Instead of sampling from P(v|h0) and P(h|v1), as
in the naive solution, we use themean-field approximation to generate the samples v1

and h1. In other words, these samples now take real values instead of binary values.
The same trick can be applied to

〈vi h j 〉data ≈ 〈vi h j 〉0 = v0i E j (h|v0) = v0i Pj (h|v0). (5.28)

If N (which typically is a small value) steps of contrastive divergence is used, the
expected value is usedwhenever the visible vector is to be generated, and the sampling
technique can be used whenever the hidden vector is needed, except the last step, in
which the expected vector is used.

Similar update rules for the model parameters a and b in the Bernoulli-Bernoulli
RBM can be derived by simply replacing ∂ E(v,h)

∂θ
in Eq. (5.20) with the appropriate

gradients. The complete gradient estimation in the matrix format is

∇W JNLL (W, a, b; v) = −
[
〈hvT〉data − 〈hvT〉model

]
, (5.29)

∇a JNLL (W, a, b; v) = − [〈v〉data − 〈v〉model] , (5.30)

∇b JNLL (W, a, b; v) = − [〈h〉data − 〈h〉model] . (5.31)

The CD algorithm can also be applied to train the Gaussian-Bernoulli RBM. The
only difference is that in the Gaussian-Bernoulli RBM, we use Eq. (5.8) to estimate
the expected value of the posterior distribution E(v|h). Algorithm 5.1 summarizes
the keys steps in training RBMs using the contrastive divergence algorithm.

Similar to the DNN training, effective RBM training also requires many practical
considerations. Many of the discussions in Sect. 4.3 can be applied to the RBM
training. A comprehensive practical guide in training RBMs can be found in [7].

5.2 Deep Belief Network Pretraining

An RBM can be considered as a generative model with infinite number of layers, in
which all the layers share the same weight matrix as shown in Fig. 5.5a, b. If we sep-
arate the bottom layer from the deep generative model described in Fig. 5.5b, the rest
layers form another generative model, which also has infinite number of layers with
shared weight matrices. These rest layers equal to another RBM whose visible layer
and hidden layer is switched as shown in Fig. 5.5c. This model is a special generative
model named deep belief network (DBN), in which the top layer is an undirected
RBM, and the bottom layers form a directed generative model. We apply the same
reasoning to Fig. 5.5c and can see that it equals to the DBN illustrated in Fig. 5.5d.

http://dx.doi.org/10.1007/978-1-4471-5779-3_4
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Algorithm 5.1 The contrastive divergence algorithm for training RBMs.
1: procedure TrainRBMWithCD(S = {om |0 ≤ m < M} , N)

� S is the training set with M samples, N is the CD steps
2: Randomly initialize {W0, a0, b0}
3: while Stopping Criterion Not Met do

� Stop if reached max iterations or the training criterion improvement is small
4: Randomly select a minibatch O with Mb samples.
5: V0 ← O � Positive phase
6: H0 ← P(H|V0) � Applied column-wise

7: ∇W J ← H0
(
V0

)T
8: ∇a J ← sumrow

(
V0

) � Sum along rows
9: ∇b J ← sumrow

(
H0

)
10: for n ← 0; n < N ; n ← n + 1 do � Negative phase
11: Hn ← I (Hn > rand (0, 1)) � Sampling, I (•) is the indicator function
12: Vn+1 ← P(V|Hn)

13: Hn+1 ← P(H|Vn+1)

14: end for
15: ∇W J ← ∇WJ − HN

(
VN

)T � Subtract negative statistics
16: ∇a J ← ∇a J − sumrow

(
V0

)
17: ∇b J ← ∇b J − sumrow

(
H0

)
18: Wt+1 ← Wt + ε

Mb
�Wt � Update W

19: at+1 ← at + ε
Mb

�at � Update a
20: bt+1 ← bt + ε

Mb
�bt � Update b

21: end while
22: Return rbm = {W, a, b}
23: end procedure

The relationship between the RBM and DBN suggests a layer-wise procedure to
train very deep generative models [8]. Once we have trained an RBM, we cause the
RBMto re-represent the data. For eachdata vector,v,we compute a vector of expected
hidden neuron activations (which equal to the probabilities) h. We use these hidden
expectations as training data for a new RBM. Thus each set of RBM weights can be
used to extract features from the output of the previous layer. Once we stop training
RBMs, we have the initial values for all the weights of the hidden layers of a DBN
with a number of hidden layers equal to the number of RBMs we trained. The DBN
can be further fine-tuned using the algorithms such as the wake-sleep algorithm [10].

In the above procedure, we have assumed that the dimensions in the RBMs are
fixed. In this setup, the DBN would perform exactly as the RBM if the RBM is
perfectly trained. However, this assumption is not necessary and we can stack RBMs
with different dimensions. This allows for flexibility in the DBN architecture, and
stacking additional layers can potentially improve the upper bound of the likelihood.

The DBN weights can be used as the initial weights in the sigmoidal DNN. This
is because the conditional probability P (h|v) in the RBM has the same form as that
in the DNN if the sigmoid nonlinear activation function is used. The DNN described
in Chap.4 can be viewed as a statistical graphical model, in which each hidden

http://dx.doi.org/10.1007/978-1-4471-5779-3_4
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Fig. 5.5 An RBM (a) is equivalent to a generative model with infinite number of layers (b), in
which all the layers share the same weight matrix. By replacing top layers with RBMs, (b) equals
to the DBNs (c) and (d)

layer 0 < � < L models posterior probabilities of conditionally independent hidden
binary neurons h� given input vectors v�−1 as Bernoulli distribution

P
(

h�|v�−1
)

= σ
(

z�
)

= σ
(

W�v�−1 + b�
)

, (5.32)

and the output layer approximates the label y conditioned on the input as a multino-
mial probability distribution as

P
(

y|vL−1
)

= softmax
(

zL
)

= softmax
(

WLvL−1 + bL
)

. (5.33)

Given the observed feature o and the label y, the precise modeling of P(y|o) requires
integration over all possible values of h across all layers which is infeasible. An effec-
tive practical trick is to replace themarginalizationwith themean-field approximation
[17]. In other words, we define

v� = E(h�|v�−1) = P
(

h�|v�−1
)

= σ
(

W�v�−1 + b�
)

, (5.34)

and we get the conventional nonstochastic description of the DNN discussed in
Chap.4.

Based on this view of the sigmoidal DNN, we can see that the DBN weights can
be used as the initial weights of the DNN. The only difference between DBN and

http://dx.doi.org/10.1007/978-1-4471-5779-3_4
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DNN is that in the DNN we have labels. As such, in the DNN, when the pretraining
finishes, we add a randomly initialized softmax output layer and use backpropagation
to fine-tune all the weights in the network discriminatively.

Initializing DNNweights with generative pretrainingmay potentially improve the
performance of the DNN on the testing set. This is due to three reasons. First, the
DNN is highly nonlinear and non-convex. The initialization point may greatly affect
the final model especially if the batch mode training algorithm is used. Second, the
generative criterion used in the pretraining stage is different from the discriminative
criterion used in the backpropagation phase. Starting the BP training from the gen-
eratively pretrained model thus implicitly regularizes the model. Third, since only
the supervised fine-tuning phase requires labeled data, we can potentially leverage
a large quantity of unlabeled data during pretraining. Experiments have shown that
generative pretraining often helps and never hurts the training of DNN, except that
pretraining takes additional time. The generative pretraining is particularly helpful
when the training set is small.

The DBN pretraining is not important when only one hidden layer is used and it
typically works best with two hidden layers [18, 19]. When the number of hidden
layers increases, the effectiveness often decreases. This is because DBN-pretraining
employs two approximations. First, the mean-field approximation is used as the gen-
eration target when training the next layer. Second, the approximated contrastive
divergence algorithm is used to learn the model parameters. Both these approxima-
tions introduce modeling errors for each additional layer. As the number of layers
increases, the integrated errors increase and the effectiveness of DBN-pretraining
decreases. It is obvious that although we can still use the DBN-pretrained model as
the initial model for DNNs with rectified linear units, the effectiveness is greatly
discounted since there is no direct link between two.

5.3 Pretraining with Denoising Autoencoder

In the layer-wise generative DBN-pretraining RBM is used as the building block.
However, RBM is not the only technique that can be used to generatively pre-
train the model. An equally effective approach is denoising autoencoder as illus-
trated in Fig. 5.6. In the autoencoder, the goal is to find an Nh-dimensional hidden

Fig. 5.6 Denoising
autoencoder: the goal is to
train a hidden representation
which can be used to
reconstruct the original input
from a stochastically
corrupted version of it

w
d

w
e

V

V

h
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representation h = f (v) ∈ R
Nh×1, from which the original Nv-dimensional signal v

can be reconstructed as ṽ = g (h) with minimum mean square error (MSE)

JMSE (W, b; S) = 1

M

M∑
m=1

1

2

∥∥ṽm − vm
∥∥2 (5.35)

over an unlabeled training set S = {(vm) |1 ≤ m ≤ M}. In theory, the deterministic
encoding function f (v) and the deterministic decoding function g (h) can be any
function. In practice, some form of functional is selected to reduce the complexity
of the optimization problem.

In its simplest form, one linear hidden layer can be used to represent the input
signal. Under this condition, the hidden neurons learn to project the input in the span
of the firstNh principal components of the data. If the hidden layer is nonlinear, which
is typically the case for our purposes, the autoencoder behaves differently from the
principal component analysis (PCA) and has the potential to capture multimodal
properties of the input distribution.

Since our interest here is to use autoencoder to initialize the weights in the sig-
moidal DNN, we choose

h = f (v) = σ(Wev + b), (5.36)

where We ∈ R
Nh×Nv is the encoding matrix, and b ∈ R

Nh×1 is the hidden layer bias
vector. If the input feature v ∈ {0, 1}Nv×1 takes binary values, we can choose

ṽ = g (h) = σ(Wdh + a), (5.37)

where a ∈ R
Nv×1 is the reconstruction layer bias vector. If the input feature v ∈

R
Nv×1 takes real values, we can choose

ṽ = g (h) = Wdh + a. (5.38)

Note that unlike in RBMs, in autoencoders the weight matrices We and Wd may be
different although they are typically tied as We = W and Wd = WT. No matter
whether the input feature is binary or real-valued and no matter what encoding and
decoding functions are used, the backpropagation algorithm described in Chap.4 can
be used to learn the parameters in the autoencoder.

In the autoencoder, the hope is that the distributed hidden representation h can
capture the main factors of variation in the data. Since the autoencoder is trained
to minimize the reconstruction error on the training set, it gives low reconstruction
error to test samples drawn from the same distribution as the training samples, but
relatively higher reconstruction error to other samples.

There is a potential problem with the autoencoder when the dimension of the
hidden representation is higher than that of the input feature. If there is no other

http://dx.doi.org/10.1007/978-1-4471-5779-3_4
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constraint than the minimization of the reconstruction error, the autoencoder may
just learn the identity function and does not extract any statistical regularities present
in the training set.

This problem can be resolved with many different approaches. For example, we
can add sparsity constraint to the hidden representation by forcing a large percentage
of neurons in the hidden representation to be zero. Alternatively, we can add ran-
dom noise to the representation learning process. This is exploited in the denoising
autoencoder [1], which forces the hidden layer to discover more robust features [21]
and prevents it from simply learning the identity function, by reconstructing the input
from a corrupted version of it.

The input can be corrupted in many ways, the simplest mechanism is randomly
selecting entries (as many as half) of the input and setting them to zero. A denoising
autoencoder does two things: preserve the information in the input, and undo the
effect of the stochastic corruptionprocess.The latter canonlybedonebycapturing the
statistical dependencies between the inputs. Note that in the contrastive divergence
training procedure of the RBM, the sampling step essentially does the stochastic
corruption of the input.

Similar to using RBMs, we cause the denoising autoencoder to pretrain a DNN
[1]. We can first train a denoising autoencoder and use the encoding weight matrix
as weight in the first hidden layer. We can then use the hidden representation as the
input to a second denoising autoencoder which, when is trained, can be used as the
second hidden layer weight matrix in the DNN. This process can continue until the
desired number of hidden layers is reached.

The denoising autoencoder-based pretraining has similar properties to the DBN
(RBM) pretraining procedure. It is a generative procedure and does not require
labeled data. As such, it can potentially bring the DNN weights to a relatively good
initial point and implicitly regularize the DNN training procedure with the generative
pretraining criterion.

5.4 Discriminative Pretraining

Both the DBN and the denoising autoencoder-based pretraining are generative pre-
training techniques. Alternatively, the DNN parameters can be initialized completely
discriminatively using the discriminative pretraining, or DPT. An obvious approach
is layer-wise BP (LBP) as shown in Fig. 5.7. With layer-wise BP, we first train a one-
hidden-layer DNN (Fig. 5.7a) to full convergence using labels discriminatively, then
insert another hidden layer (dotted box in Fig. 5.7b) between layer v1 and the output
layer with randomly initialized weights (indicated with green arrows in Fig. 5.7b),
again discriminatively train the network to full convergence, and so on until the
desired number of hidden layers is all trained. This is similar to greedy layer-wise
training [1], but differs in that greedy layer-wise training only updates newly added
hidden layers while in the layer-wise BP all layers are jointly updated each time
a new hidden layer is added. For this reason, under most conditions layer-wise BP
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Fig. 5.7 Discriminative pretraining of DNNs

outperforms greedy layer-wise training since in the latter case the lower-layerweights
are learned without knowing the upper layers. The layer-wise BP, however, has the
drawback that some hidden neurons may operate in the saturation range after it is
trained to convergence and thus are difficult to further update when new hidden layers
are added. This limitation can be alleviated by not training the model to convergence
every time when a new hidden layer is added. A typical heuristic is that we run the
DPT by going through the data 1

L times of the total number of the data passes needed
to converge, where L is the total number of layers in the final model. In the DPT,
the goal is to bring the weights close to a good local optimum. It does not have the
regularization effect which is available in the generative DBN pretraining. As such,
DPT is best used when large amount of training data are available.

5.5 Hybrid Pretraining

Both the generative and the discriminative pretraining have their drawbacks. The gen-
erative pretraining is not tied to the task specific objective function. It helps to reduce
overfitting but is not guaranteed to help the discriminative fine-tuning. The discrim-
inative pretraining directly minimizes the objective function (e.g., cross-entropy).
However, if the training is not scheduled well, weights learned in lower layers are
potentially tuned toomuch to the final objectivewithout considering additional layers
that will be added later. To alleviate these problems,we can adopt a hybrid pretraining
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approach, in which a weighted sum of the generative and discriminative criteria is
optimized [15]. A typical hybrid pretraining criterion is

JHYB (W, b; S) = JDISC (W, b; S) + α JGEN (W, b; S) , (5.39)

where α is an interpolation weight between the discriminative criterion JDISC
(W, b; S) and the generative criterion JGEN (W, b; S). The discriminative criterion
can be cross-entropy for classification tasks ormean square error for regression tasks.
The generative criterion can be negative log-likelihood for RBMs or reconstruction
error for autoencoder-based pretraining. Intuitively, the generative component acts
as a data-dependent regularizer for the discriminative component [13]. It is obvious
that this hybrid criterion can be used not only in the pretraining phase but also in the
fine-tuning phase in which case it is referred to as HDRBM [13].

It has been shown that the generative pretraining often helps for training deep
architectures [4–6, 19]. When the model becomes deeper, however, the discrimina-
tive pretraining performs equally well or even better than the generative pretraining
[18]. The hybrid pretraining can outperform both the generative and discriminative
pretraining [15]. It has been observed that when the training set size is large enough,
pretraining becomes less important [18, 22]. However, even under this condition, pre-
trainingmay still help tomake the trainingprocedure robust to different randomseeds.

5.6 Dropout Pretraining

In Sect. 4.3.4, we have introduced dropout [12] as a technique to improve the general-
ization ability of DNNs.Wementioned that dropout can be viewed as a way to reduce
the capacity of the DNNby randomly dropping neurons. Alternatively, as pointed out
by Hinton et al. [12], dropout can be considered as a bagging technique that averages
over a large amount of models with tied parameters. In other words, dropout can
generate smoother objective surface than the DNNs without using dropout. Since
a smoother objective surface has less ill-conditioned local optimum than a sharper
surface it is less likely to be trapped into a very bad local optimum. This suggests
that we may pretrain a DNN using dropout to quickly find a relatively good initial
point and then fine-tune the DNN without using dropout.

This is exactly what suggested by Zhang et al. [23] who showed that we can
pretrain a DNN by going through the training data 10–20 passes using a dropout rate
of 0.3–0.5 and then continue training the DNN by setting dropout rate to 0. DNNs
initialized in this way outperformed DNNs pretrained using RBM-pretraining by
3% relative error reduction. Our internal experiments indicate that we can achieve
similar improvements on other tasks. Note that dropout pretraining also requires
labeled data and achieves similar performance as the discriminative pretraining we
discussed in Sect. 5.4 but is much more easier to implement and control than DPT.

http://dx.doi.org/10.1007/978-1-4471-5779-3_4
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Chapter 6
Deep Neural Network-Hidden Markov Model
Hybrid Systems

Abstract In this chapter, we describe one of the several possible ways of
exploiting deep neural networks (DNNs) in automatic speech recognition systems—
the deep neural network-hidden Markov model (DNN-HMM) hybrid system. The
DNN-HMM hybrid system takes advantage of DNN’s strong representation learn-
ing power and HMM’s sequential modeling ability, and outperforms conventional
Gaussian mixture model (GMM)-HMM systems significantly on many large vocab-
ulary continuous speech recognition tasks.We describe the architecture and the train-
ing procedure of the DNN-HMM hybrid system and point out the key components
of such systems by comparing a range of system setups.

6.1 DNN-HMM Hybrid Systems

6.1.1 Architecture

The DNNs we described in Chap.4 cannot be directly used to model speech signals
since speech signals are time series signals while DNNs require fixed-size inputs. To
exploit the strong classification ability of DNNs in speech recognition, we need to
find a way to handle the variable length problem in speech signals.

The combination of artificial neural networks (ANNs) andHMMsas an alternative
paradigm for ASR started between the end of the 1980s and the beginning of the
1990s. A variety of different architectures and training algorithms were proposed at
that time (see the comprehensive survey in [28]). This line of researchwas resurrected
recently after the strong representation learning power of DNNs becamewell known.

Oneof the approaches that havebeenproven toworkwell is to combineDNNswith
HMMs in a framework called DNN-HMM hybrid system as illustrated in Fig. 6.1. In
this framework, the dynamics of the speech signal is modeled with HMMs and the
observation probabilities are estimated through DNNs. Each output neuron of the
DNN is trained to estimate the posterior probability of continuous density HMMs’
state given the acoustic observations. In addition to their inherently discriminative
nature, DNN-HMMs have two additional advantages: training can be performed
using the embedded Viterbi algorithm and decoding is generally quite efficient.

© Springer-Verlag London 2015
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Fig. 6.1 Architecture of the DNN-HMMhybrid system. The HMMmodels the sequential property
of the speech signal, and the DNN models the scaled observation likelihood of all the senones (tied
triphone states) [13]. The same DNN is replicated over different points in time

These kinds of hybrid models were proposed and seen as a promising technique
for LVCSR in the early tomid-1990s andwere referred asANN-HMMhybridmodels
in the literature [5, 17, 18]. Most early work on the hybrid approach used context-
independent phone states as labels forANN training and considered small vocabulary
tasks. ANN-HMMs were later extended to model context-dependent phones [4] and
were applied to mid-vocabulary and some large vocabulary ASR tasks [24], which
also employed recurrent neural network architectures.

However, in the earlier work on context-dependent ANN-HMM hybrid architec-
tures [4], the posterior probability of the context-dependent phone was modeled as
either

p(si , c j |xt ) = p(si |xt )p(ci |s j , xt ) (6.1)

or
p(si , c j |xt ) = p(ci |xt )p(si |c j , xt ), (6.2)

where xt is the acoustic observation at time t , c j is one of the clustered context
classes {c1, . . . , cJ }, and si is either a context-independent phone or a state in
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a context-independent phone. ANNs were used to estimate both p(si |xt ) and
p(ci |s j , xt ) (alternatively p(ci |xt ) and p(si |c j , xt )). Although these types of context-
dependent ANN-HMM models outperformed GMM-HMMs for some tasks, the
improvements were small.

These earlier hybridmodels have some important limitations. For example, ANNs
with more than two hidden layers were rarely exploited due to the computational
power limitations, and the context-dependent model described above does not take
advantage of the numerous effective techniques developed for GMM-HMMs.

The recent advancement [6, 7, 12, 15, 25, 29] indicates that significant recognition
accuracy improvement can be achieved if we replace the traditional shallow neural
networks with deeper (optionally pretrained) ones, and use senones (tied triphone
states) [13] instead of monophone states as the output units of the neural network.
This improved ANN-HMM hybrid model is referred as CD-DNN-HMM [7]. Mod-
eling senones directly also carries two other advantages: First, we can implement a
CD-DNN-HMM system with only minimal modifications to an existing CD-GMM-
HMMsystem. Second, any advancement ofmodeling units (e.g., cross-word triphone
models) in theCD-GMM-HMMsystems is accessible to theCD-DNN-HMMsystem
since the improvement can be directly reflected in the output units of the DNNs.

In the CD-DNN-HMM, a single DNN is trained to estimate the conditional state
posterior probability p (qt = s|xt ) for all states s ∈ [

1, S
]
. This is different from the

GMMs in which a different GMM is used to model each different state. In addition,
the input to the DNN is typically not a single frame but a window of 2� +1 (typically
9–13) frames of input features xt = [

omax(0,t−�) · · · ot · · · omin(T,t+�)

]
to exploit

information in the neighboring frames.

6.1.2 Decoding with CD-DNN-HMM

Since the HMM requires the likelihood p (xt |qt ) instead of the posterior probability
during the decoding process, we need to convert the posterior probability to the
likelihood as

p(xt |qt = s) = p(qt = s|xt )p(xt )/p(s), (6.3)

where p(s) = Ts
T is the prior probability of each state (senone) estimated from the

training set, Ts is the number of frames labeled as state s, and T is the total number
of frames. p(xt ) is independent of the word sequence and thus can be ignored, which
leads to the scaled likelihood p̄ (xt |qt ) = p(qt = s|xt )/p(s) [18]. Although dividing
by the prior probability p(s)may not give improved recognition accuracy under some
conditions, it can be important in alleviating the label bias problem, especially when
the training utterances contain long silence segments.

As a summary, in the CD-DNN-HMM the decoded word sequence ŵ is deter-
mined as
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ŵ = arg maxw p(w|x) = arg maxw p(x|w)p(w)/p(x)

= arg maxw p(x|w)p(w), (6.4)

where p(w) is the language model (LM) probability, and

p(x|w) =
∑

q

p(x|q, w)p(q|w) (6.5)

≈ maxπ(q0)
T∏

t=1

aqt−1qt

T∏
t=0

p(qt |xt )/p(qt ) (6.6)

is the acoustic model (AM) probability, where p(qt |xt ) is computed from the DNN,
p(qt ) is the state prior probability, andπ(q0) andaqt−1qt are the initial state probability
and state transition probability, respectively, determined by the HMM. Similar to that
in the GMM-HMM case, an LM weight λ is often used to balance between the AM
and LM scores. The final decoding path is thus determined by

ŵ = arg maxw

[
log p(x|w) + λ log p(w)

]
. (6.7)

6.1.3 Training Procedure for CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi algorithm, the main
steps of which are summarized in Algorithm 6.1.

The CD-DNN-HMM has three components, a DNN dnn, an HMM hmm, and
a state prior probability distribution prior. Since the CD-DNN-HMM shares the
phoneme tying structure and the HMM with the GMM-HMM system, the first step
in the CD-DNN-HMM training is to train a GMM-HMM system using the training
data. Since the DNN training labels are generated from the GMM-HMM system and
the label quality can affect the performance of the DNN system, it is important to
train a good GMM-HMM system as the seed model.

Once theGMM-HMMmodel hmm0 is available, we can parse themodel and build
a mapping from the state name to the senoneID. The mapping stateToSenoneIDMap
may not be trivial to build. This is because the logical triphone HMMs that are
effectively equivalent are clustered and represented by a physical triphone. In other
words, several logical triphones are mapped to the same physical triphone. Each
physical triphone has several (typically 3) states which are tied and represented by
senones.
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With theGMM-HMMmodelhmm0wecangenerate a forced alignment at the state
level using theViterbi algorithmon the training set.Byusing the stateToSenoneIDMap
we can convert the state names in the alignment to the senoneIDs. We can then gen-
erate the featureSenoneIDPairs from the alignment and use them to train the DNN.
The same featureSenoneIDPairs can also be used to estimate the senone prior prob-
abilities prior.

With the GMM-HMM model hmm0 we can also generate an HMM hmm, which
contains the same state transition probabilities as that in hmm0, for use in the DNN
system. A simple approach is to replace each GMM (which models one senone) in
hmm0 with a (pseudo) single one-dimensional Gaussian. The variance (or precision)
of the Gaussian is irrelevant and can be set to any positive value (e.g., always set
to 1). The value of each senone’s mean is set to the corresponding senoneID. Using
this trick, evaluating each senone is equivalent to a table lookup of the features
(log-likelihood) produced by the DNN with the index indicated by the senoneID.

In this procedure, it is assumed that a CD-GMM-HMM exists and is used to
generate senone alignment. The decision tree used to cluster tri-phone states is also
built using the GMM-HMM. However, this is not necessary. If we would completely
remove GMM-HMM from the picture, we can build a monophone DNN-HMM by
evenly segmenting the utterances (called flat-start) and using that information as the
training label. We can then realign the utterances using the monophone DNN-HMM.
After that, we can build a single Gaussian model for each monophone state and build
the decision tree as usual. In fact, this GMM-freeCD-DNN-HMMtraining procedure
has recently been reported in [26] with success.

Algorithm 6.1 Main steps involved in training CD-DNN-HMMs
1: procedure TrainCD- DNN- HMM(S) � S is the training set
2: hmm0 ← TrainCD-GMM-HMM(S); � hmm0 is used in the GMM system
3: stateAlignment ← ForcedAlignmentWithGMMHMM(S, hmm0);
4: stateT oSenoneI DMap ← GenerateStateTosenoneIDMap(hmm0 );
5: f eatureSenoneI D Pairs←GenerateDNNTrainingSet(stateT oSenoneI DMap,

stateAlignment);
6: ptdnn ← PretrainDNN(S); � Optional
7: hmm ← ConvertGMMHMMToDNNHMM(hmm0, stateT oSenoneI DMap );

� hmm is used in the DNN system
8: prior ← EstimatePriorProbability( f eatureSenoneI D Pairs)
9: dnn ← Backpropagate(ptdnn, f eatureSenoneI D Pairs);
10: Return dnnhmm = {dnn, hmm, prior}
11: end procedure

For each utterance with T frames, the embedded Viterbi training algorithm min-
imizes the average cross entropy, which is equivalent to the negative log-likelihood

JNLL (W, b; x, q) = −
T∑

t=1

log p (qt |xt ; W, b) . (6.8)
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If the newmodel
(

W
′
, b

′)
improves the training criterion over the oldmodel (W, b),

we have

−
T∑

t=1

log p
(

qt |xt ; W
′
, b

′)
< −

T∑
t=1

log p (qt |xt ; W, b) .

The score of the aligned utterance

log p(x|w; W
′
, b

′
) = logπ(q0) +

T∑
t=1

log
(
aqt−1qt

) +
T∑

t=1

[
log p

(
qt |xt ; W

′
, b

′) − log p(qt )
]

> logπ(q0) +
T∑

t=1

log
(
aqt−1qt

) +
T∑

t=1

[
log p (qt |xt ; W, b) − log p(qt )

]

= log p(x|w; W, b). (6.9)

In other words, the new model not only improves the frame-level cross entropy but
also the likelihood score of the utterance given the correctword sequence. This proves
the correctness of the embeddedViterbi training algorithm.Adifferent justification of
the embedded Viterbi training algorithm can be found in [10]. It is to be noted though
that the score associated with each competitive word is not guaranteed to decrease
although the sum of scores of all competitive words decreases. In addition, the above
argument is true on average but may not be true for each individual utterance. If the
average cross entropy improvement is very small, it is possible that the recognition
accuracy may actually decrease, especially if the small improvement is from better
modeling of the silence segments. A more principled yet more complex approach
to train the CD-DNN-HMM system is to use the sequence discriminative training
criterion which we will discuss in Chap.8.

6.1.4 Effects of Contextual Window

As we have mentioned in Sect. 6.1.1, it is important to use a window of (typically
9–13) frames of input features in the CD-DNN-HMM to achieve great results. It
is obvious that by including a long window of frames the DNN model can exploit
information in the neighboring frames. Contrary to common sense, however, by
including neighboring frames the DNN also models correlations between frames of
features and thus partially alleviates the violation to the observation independence
assumption made in HMMs.

http://dx.doi.org/10.1007/978-1-4471-5779-3_8
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Note that the score of each word sequence is evaluated as

log p(x|w) = logπ(q0) +
T∑

t=1

log
(
aqt−1qt

)

+
N∑

n=1

[
log p

(
otn , . . . , otn+1−1|sn

)]
, (6.10)

where T is the length of the feature frames, N ≤ T is the length of the state sequence,
sn is the nth state in the state sequence, qt is the state at time t , and tn is the start
time of the nth state. Here we have assumed that the state duration can be modeled
using a Markov chain.1 Note that the observation score log p

(
otn , . . . , otn+1−1|sn

)
measures the log-likelihood of observing a segment of features given the state sn and
is what have been used in segmental models [19]. In the HMM, each feature frame
is assumed to be independent and thus

log p
(
otn , . . . , otn+1−1|sn

) �
tn+1−1∑

t=tn

[
log p (ot |sn)

]
. (6.11)

This assumption is known to be untrue in reality since the adjacent frames do
correlate with each other given the same state.2 To model the correlations between
the frames, the segment score should be evaluated as

log p
(
otn , . . . , otn+1−1|sn

) =
tn+1−1∑

t=tn

[
log p

(
ot |sn, otn , . . . , ot−1

)]
. (6.12)

As we know, if two frames are too far (e.g., more than M frames) away, they can be
considered uncorrelated. For this reason, the above score can be approximated as

log p
(
otn , . . . , otn+1−1|sn

) �
tn+1−1∑

t=tn

[
log p (ot |sn, ot−M , . . . , ot−1)

]

=
tn+1−1∑

t=tn

[
log p

(
sn|xM

t

)
− log p

(
sn|xM−1

t−1

)]
+ c

�
tn+1−1∑

t=tn

[
log p

(
sn|xM

t

)
− log p (sn)

]
+ c, (6.13)

1 For the desired segmental model, this duration model is very rough.
2 The independence assumption made in the HMM is one of the reasons why language model
weighting is needed. Assuming one doubles the features by extracting a feature for each 5ms
instead of 10ms, the acoustic model score will be doubled and so the language model weight will
also need to be doubled.
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where c is a constant irrelevant to sn , xM
t = {ot−M , . . . , ot−1, ot } is the feature vector

concatenated from M frames, and the state prior is assumed to be independent of the
observation.We can see that by including the neighbor frames in theDNNmodel (i.e.,
estimate p

(
sn|xM

t

)
) we can more accurately estimate the segment score while still

enjoying the benefit provided by the independence assumption made in the HMM.

6.2 Key Components in the CD-DNN-HMM and Their Analysis

CD-DNN-HMMs outperform GMM-HMMs in many large vocabulary continuous
speech recognition (LVCSR) tasks. It is important to understand which components
or procedures have contributed to the performance improvement. In this section, we
examine how different decisions affect recognition accuracy. In particular, we empir-
ically compare the performance difference between using a mono-phone alignment
and a tri-phone alignment, usingmonophone state labels and tri-phone senone labels,
using shallow and deep networks, and tuning the HMM transition probabilities and
otherwise. We show, by experimental results summarized from a series of studies
reported in [6, 7, 25, 27, 29], that the three key components contributing most to
the performance improvement are: (1) using deep neural networks with sufficient
depth, (2) using a long window of frames, and (3) model senones directly. In all the
experiments, the CD-DNN-HMM system replaces the Gaussian-mixture component
with likelihoods derived from the MLP (DNN) posteriors, while leaving everything
else the same.

6.2.1 Datasets and Baselines for Comparisons and Analysis

6.2.1.1 Bing Mobile Voice Search Dataset

The Bing mobile voice search application allows users to do USA-wide business and
web search from their mobile phones via voice. The business search dataset used
in the experiments was collected under real usage scenarios in 2008, at which time
the application was restricted to do location and business lookup [30]. All audio
files collected were sampled at 8kHz and encoded with the GSM codec. This is
a challenging task since the dataset contains all kinds of variations: noise, music,
side-speech, accents, sloppy pronunciation, hesitation, repetition, interruption, and
different audio channels.

The dataset was split into a training set, a development set, and a test set. To
simulate the real data collection and training procedure, and to avoid having overlap
between training, development, and test sets, the dataset was split based on the time
stamp of the queries. All queries in the training set were collected before those in the
development set, which were in turn collected before those in the test set. The public
lexicon from Carnegie Mellon University was used. The normalized nationwide
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Table 6.1 Bing mobile voice
search dataset

Hours Number of utterances

Training set 24 32,057

Development set 6.5 8,777

Test set 9.5 12,758

Table 6.2 The
CD-GMM-HMM baseline
sentence error rate (SER) on
the voice search dataset
(Summarized from Dahl et al.
[7])

Criterion Dev SER (%) Test SER (%)

ML 37.1 39.6

MMI 34.9 37.2

MPE 34.5 36.2

languagemodel (LM)used in the evaluation contains 65Kwordunigrams, 3.2million
word bi-grams, and 1.5 million word tri-grams, and was trained using the data feed
and collected query logs; the perplexity is 117.

Table6.1 summarizes the number of utterances and total duration of audio files (in
hours) in the training, development, and test sets. All 24h of training data included
in the training set are manually transcribed.

Performance on this task was evaluated using sentence error rate (SER) instead
of word error rate (WER). The average sentence length is 2.1 tokens, so sentences
are typically quite short. Also, the users care most about whether they can find
the business or location they seek for with fewest attempts. They typically will
repeat what they have said if one of the words is mis-recognized. Additionally,
there is significant inconsistency in spelling that makes using sentence accuracy
more convenient. For example, “Mc-Donalds” sometimes is spelled as “McDonalds,”
“Walmart” sometimes is spelled as “Wal-mart”, and “7-eleven” sometimes is spelled
as “7 eleven” or “seven-eleven”. The sentence out-of-vocabulary (OOV) rate using
the 65K vocabulary LM is 6% on both the development and test sets. In other words,
the best possible SER we can achieve is 6% using this setup.

The clustered cross-word triphone GMM-HMMs were trained with the maxi-
mum likelihood (ML), maximum mutual information (MMI) [3, 14, 20], and
minimum phone error (MPE) [20, 23] criteria. The 39-dim features used in the
experiments include the 13-dim static Mel-frequency cepstral coefficient (MFCC)
(with C0 replaced with energy) and its first and second derivatives. The features were
pre-processed with the cepstral mean normalization (CMN) algorithm.

The baseline systems were optimized by tuning the tying structures, number of
senones, and Gaussian splitting strategies on the development set. All systems have
53K logical and 2K physical tri-phones with 761 shared states (senones), each of
which is a GMM with 24 mixture components. The GMM-HMM baseline results
are summarized in Table6.2.

For all CD-DNN-HMM experiments cited for the VS dataset, 11 frames (5-1-5)
of MFCCs were used as the input features of the DNNs. During DNN pretraining a
learning rate of 1.5e−4 per sample was used for all layers. For fine-tuning, a learning
rate of 3e−3 per sample was used for the first 6 epochs and a learning rate of 8e−5
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per sample was used for the last 6 epochs. In all the experiments, a minibatch size
of 256 and a momentum of 0.9 was used. The hyperparameters were selected by
hand, based on preliminary single hidden layer experiments so it may be possible
to obtain even better performance with the deeper models using a more exhaustive
hyperparameter search strategy.

6.2.1.2 Switchboard Dataset

TheSwitchboard (SWB) dataset [8, 9] is a corpus of conversational telephone speech.
It has three setupswhose training set sizes are 30h (a random subset of Switchboard-I
training set), 309h (full Switchboard-I training set), and 2,000h (+Fisher training
sets), respectively. For all configurations the 1,831-segment SWB part of the NIST
2,000Hub5 eval set and the FSH half of the 6.3h Spring 2003NIST rich transcription
set (RT03S) are used as the evaluation sets. The system uses 13-dimensional PLP
features with rolling-window mean-variance normalization and up to third-order
derivatives, which is reduced to 39 dimensions by heteroscedastic linear discriminant
analysis (HLDA) [16]. The speaker-independent 3-state cross-word triphones share
1,504 (40 mixture), 9,304 (40 mixture), and 18,004 (72 mixture) CART-tied states,
respectively, on the 30, 309, and 2,000h setups, optimized for the GMM-HMM
systems. The trigram language model was trained on the 2,000h Fisher transcripts
and interpolated with a written-text trigram. Test-set perplexity with the 58k lexicon
is 84.

The DNN system was trained using stochastic gradient descent in mini-batches.
The mini-batch sizes were 1,024 frames except for the first mini-batches for which
256 samples were used. For DBN-pretraining the mini-batch size was 256.

For pretraining, the learning rate is 1.5e−4 per sample. For the first 24h of training
data the learning rate is 3e−3 per sample, and was reduced to 8e−5 per sample after
3 epochs. The momentum of 0.9 was used. These learning rates are the same as that
used in the VS dataset.

6.2.2 Modeling Monophone States or Senones

As mentioned at the beginning of this section, there are three key components in
the CD-DNN-HMMs. Direct modeling of the context-dependent phone states (i.e.,
senones) is one of them. Modeling senones directly allows to take advantage of
information encoded in the fine-grained labels and to alleviate overfitting. It also
reduces the confusable state transitions in theHMMand thus decreases the ambiguity
in decoding, even though increasing the DNN output nodes would reduce the frame
classification accuracy. The benefit of modeling senones over monophone states is
clearly demonstrated in Table6.3 which indicates a 15% relative SER reduction on
the VS development set when using a DNN with three hidden layers each of which
has 2K neurons (the 3×2K setup), and Table6.4, which indicates an over 50%



6.2 Key Components in the CD-DNN-HMM and Their Analysis 109

Table 6.3 Sentence error rate (SER) on the voice search development set when the context-
independent monophone state labels and context-dependent triphone senone labels are used

Model Monophone state (%) Senone (761) (%)

CD-GMM-HMM (MPE) − 34.5

DNN-HMM (3× 2K) 35.8 30.4

(Summarized from Dahl et al. [7])

Table 6.4 Word error rate (WER) on Hub5’00-SWB using 309h training set and ML alignment
label

Model Monophone state (%) Senone (9304) (%)

CD-GMM-HMM (BMMI) − 23.6

DNN-HMM (7× 2K) 34.9 17.1

When the context-independent monophone state labels and context-dependent triphone senone
labels are used. (Summarized from Seide et al. [25])

relative word error rate (WER) reduction on the 309h SWB task when using a DNN
with seven hidden layers each of which has 2K neurons (the 7×2K setup). The
difference in the relative error reduction is partially attributed to the fact that in the
SWB more senones are used. Using senone labels has been the single largest source
of improvement of all the design decisions we analyzed.

6.2.3 Deeper Is Better

Using DNNs instead of shallow MLPs is another key component in CD-DNN-
HMMs. Table6.5 demonstrates how the sentence error rate reduces as more layers
are added in the CD-DNN-HMM. When only one hidden layer is used the SER is
31.9%. When three hidden layers were used, the error rate was reduced to 30.4%.
The error rate was further reduced to 29.8% with four hidden layers and 29.7% with
five hidden layers. Overall, the five hidden layer model provides us with a 2.2% SER
reduction over the single hidden layer system when the same alignment is used.

In order to demonstrate the efficiency of parameterization enjoyed by deeper
neural networks, the result using a single hidden layer neural network with 16K
hidden neuronswas also reported in Table6.5. Since the output layer has 761neurons,
this shallow model requires a little more space to store than the five hidden layer
model that uses 2K hidden neurons. The development set SER of 31.4% obtained
using this wide and shallow model is slightly better than 31.9% achieved with the
single hidden layer model with 2K hidden neurons, but well below even 30.5%
obtained with the two hidden layer model (let alone 29.7% obtained with the five
hidden layer model).

Table6.6 summarizes the WER results on SWB Hub5’00-SWB test set using
the 309h training data whose senone alignment label was generated from the
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Table 6.5 Deeper is better. SER on the voice search development set achieved using DNNs with
different number of hidden layers

LxN DBN-PT (%) 1xN DBN-PT (%)

1×2k 31.9

2×2k 30.5

3×2k 30.4

4×2k 29.8

5×2k 29.7 1×16K 31.4

ML alignment and DBN-pretraining were used in all the experiments. (Summarized from Dahl
et al. [7])

Table 6.6 Deeper is better. WER on Hub5’00-SWB achieved using DNNs with different number
of hidden layers

LxN DBN-PT (%) 1xN DBN-PT (%)

1×2k 24.2

2×2k 20.4

3×2k 18.4

4×2k 17.8

5×2k 17.2 1×3,772 22.5

7×2k 17.1 1×4,634 22.6

1×16K 22.1

309h SWB training set, ML alignment and DBN-pretraining were used in all the experiments.
(Summarized from Seide et al. [25])

maximum likelihood (ML) trained GMM system. From this table we can make
several observations. First, deeper networks do perform better than shallow ones.
In other words, deeper models have stronger discriminative ability than the shal-
low models. The WER keeps reducing as we increase the number of hidden layers
if each layer contains 2K hidden neurons. More interestingly, if you compare the
5×2K setup with the 1×3,772 setup, or the 7×2K setup with the 1×4,634 setup
that have the same number of model parameters, the deep model also significantly
outperforms the shallow model. Even if the hidden layer size on the single-hidden
layer MLP is further increased to 16K we can only achieve a WER of 22.1%, which
is significantly worse than the 17.1% WER obtained using a 7×2K DNN under
the same condition. Note that as we further grow the number of hidden layers the
performance improvement decreases and it saturates after using nine hidden layers.
In practice, a tradeoff needs to be made between the additional gains inWER and the
increased cost in training and decoding as we increase the number of hidden layers.
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Table 6.7 Compare the effectiveness of using neighboring frames

Model 1 frame (%) 11 frames (%)

CD-DNN-HMM 1×4,634 26.0 22.4

CD-DNN-HMM 7×2k 23.2 17.1

WER on Hub5’00-SWB using 309h training set and ML alignment label. GMM-HMM baseline
with BMMI training is 23.6%. (Summarized from Seide et al. [25])

6.2.4 Exploit Neighboring Frames

Table6.7 comparesWER on the 309h SWB task with and without using neighboring
frames. It can be clearly seen that regardless of whether shallow or deep networks
are used, using information in the neighboring frames significantly boosts accuracy.
However, deep networks get more gains from using neighboring frames as indicated
by a 24% relative WER reduction compared to the 14% relative WER reduction
obtained using shallow models although both models have the same number of para-
meters. Also observable is that if only a single frame is used, the DNN system only
slightly outperforms the BMMI [21] trained GMM system (23.2 versus 23.6%).
Note however, the DNN system’s performance can be further improved if sequence
discriminative training similar to BMMI is conducted [27]. To use the neighboring
frames in the GMM system, complicated techniques such as fMPE [22], HLDA [16],
region-dependent transformation [31], or tandem structure [11, 32] will need to be
used. This is because to use diagonal covariance matrices in GMMs each dimension
should be uncorrelated. DNNs, however, are discriminative models that can freely
use any features even if they are correlated.

6.2.5 Pretraining

Before 2011, people believed that pretraining was critical to train deep neural net-
works. Later, however, researchers found that pretraining, although can provide addi-
tional gains sometimes, is not critical. This can be observed from Table6.8. The table
suggests that the DBN-pretraining, which does not rely on labels, does provide sig-
nificant gains over the system trained without any pretraining when the hidden layer
number is smaller than five. However, as the number of layers increases, the gain
is decreased and eventually diminishes. This is against the original motivation of
using pretraining. Researchers have conjectured that as the number of hidden layers
increases, we should see more gains from using DBN-pretraining instead of less as
indicated in the table. This behavior is partly explained by the fact that the stochastic
gradient descent algorithm used to train the DNNs has the ability to jump out of the
local optima. In addition, when large amount of training data are used overfitting,
which is partially addressed by pretraining, is less of a concern.
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Table 6.8 Compare the effectiveness of pretraining procedures

LxN NOPT (%) DBN-PT (%) DPT (%)

1×2k 24.3 24.2 24.1

2×2k 22.2 20.4 20.4

3×2k 20.0 18.4 18.6

4×2k 18.7 17.8 17.8

5×2k 18.2 17.2 17.1

7×2k 17.4 17.1 16.8

WER on Hub5’00-SWB using 309h training set and ML alignment label. NOPT: no pretraining;
DBN-PT: with DBN-pretraining, DPT: with discriminative pretraining. (Summarized from Seide
et al. [25])

On the other hand, the benefit of generative pretraining is likely to decrease
when the number of layers increases. This is because DBN-pretraining employs
two approximations. First, the mean-field approximation is used as the generation
target when training the next layer. Second, the approximated contrastive divergence
algorithm is used to learn the model parameters. Both these approximations intro-
ducemodeling errors for each additional layer. As the number of layers increases, the
integrated errors increase and the effectiveness of DBN-pretraining decreases. The
discriminative pretraining (DPT) is an alternative pretraining technique. According
to Table6.8, it performs at least as good as the DBN-pretraining procedure, espe-
cially when the DNN contains more than five hidden layers. However, even with
DPT, the performance gains against the system with pure backpropagation (BP) is
still quite small compared to the gains we get frommodeling senones and from using
deep networks. Although the WER reduction is less than what people have hoped
by using pretraining techniques, these techniques can secure a more robust training
procedure. By applying these techniques, we can avoid very bad initializations and
employ some kind of implicit regularization in the training process so that good
performance can be obtained even with a small training set.

6.2.6 Better Alignment Helps

In the embedded Viterbi training procedure, the training label of the samples are
determined using forced alignment. Intuitively, if the labels are generated from a
more accurate model the trained DNN should perform better. This is empirically
confirmed byTable6.9. Aswe can see, when alignments generatedwithMPE-trained
CD-GMM-HMMs were used, 29.3 and 31.2% SER on the development and test
sets, respectively, can be obtained. These results are 0.4% better than those achieved
using theCD-GMM-HMMMLalignment trainedCD-DNN-HMM.SinceCD-DNN-
HMMperformsbetter thanCD-GMM-HMMwecan further improve the label quality
by using the best CD-DNN-HMM to generate alignments. Table6.9 shows that the
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Table 6.9 Compare the effectiveness of the alignment quality and transition probability tuning on
voice search dataset

Alignment GMM transition DNN tuned transition

Dev SER (%) Test SER (%) Dev SER (%) Test SER (%)

from CD-GMM-HMM ML 29.7 31.6 − −
from CD-GMM-HMM MPE 29.3 31.2 29.0 31.0

from CD-DNN-HMM 28.3 30.4 28.2 30.4

5×2K model is used. SER on the development and test sets. (Summarized from Dahl et al. [7])

SER on the development and test sets can be reduced to 28.3 and 30.4%, respectively,
with the CD-DNN-HMM alignment.

Similar observations can bemade on SWB.When the 7×2k DNN is trained using
the labels generated from the CD-GMM-HMM system we get 17.1% WER on the
Hub5’00 test set. If the DNN is trained using the improved label generated from the
CD-DNN-HMM the WER can be reduced to 16.4%.

6.2.7 Tuning Transition Probability

Table6.9 also demonstrates that tuning the transition probabilities in the CD-DNN-
HMMs helps slightly. Tuning the transition probabilities comes with another benefit.
When the transition probabilities are directly borrowed from the CD-GMM-HMMs,
the best decoding performance usually was obtained when the AM weight was set
to 2. However, after tuning the transition probabilities, tuning the AM weights is no
longer needed on the voice search task.

6.3 Kullback-Leibler Divergence-Based HMM

In the hybrid DNN/HMMsystems, the observation probability is true probability that
satisfies the appropriate constraints. However, we may remove this constraint and
replace the state log-likelihoodwith other scores. In theKullback-Leibler divergence-
based HMM (KL-HMM) [1, 2] the state score is computed as

SKL (s, zt ) = KL (ys ‖ zt )=
D∑

d=1

yd
s ln

yd
s

zd
t

, (6.14)

where s is a state (e.g., senone), zd
t = P (ad |xt ) is the posterior probability of some

class ad given the observation xt , D is the number of classes, and ys is a probability
distribution that represents the state s. Theoretically, ad can be any class. In practice
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though, context-independent phones or states are typically chosen asad . For example,
zt can be the output of a DNN whose output neurons represent monophones.

Different from the hybrid DNN/HMM systems, in KL-HMM ys is an additional
model parameter that needs to be estimated for each state. In [1, 2] ys is optimized
to minimize the average frame score defined in Eq.6.14 while keeping zt (and thus
the DNN or MLP) fixed.

Alternatively, the reverse KL (RKL) distance

SRKL (s, zt ) = KL (zt ‖ ys)=
D∑

d=1

zd
t ln

zd
t

yd
s

, (6.15)

or the symmetric KL (SKL) distance

SSKL (s, zt ) = KL (ys ‖ zt ) + KL (zt ‖ ys) (6.16)

can be used as the state score.
Note that, KL-HMM can be considered as a special DNN/HMM in which ad

serves as a neuron in a D-dimensional bottleneck layer in the DNN and the softmax
layer is replaced with the KL distance. For this reason, when comparing the hybrid
DNN/HMMsystemswith theKL-HMMsystems an additional layer should be added
to the DNN/HMM hybrid system for fair comparison.3

Compared to the simpler hybrid DNN/HMM systems, KL-HMM has other two
drawbacks: the parameters ys are estimated separately from the DNN model instead
of jointly optimized as in the hybrid systems and the sequence-discriminative training
(which we will discuss in Chap. 8) in KL-HMM is not as straightforward as that in
the hybrid systems. For these reasons, this book focuses on the hybrid DNN/HMM
system instead of the KL-HMM although it is an interesting model as well.

References

1. Aradilla, G., Bourlard, H., Magimai-Doss, M.: Using KL-based acoustic models in a large
vocabulary recognition task. In: Proceedings of Annual Conference of International Speech
Communication Association (INTERSPEECH), pp. 928–931 (2008)

2. Aradilla, G., Vepa, J., Bourlard, H.: An acoustic model based on kullback-leibler divergence
for posterior features. In: Proceedings of International Conference on Acoustics, Speech and
Signal Processing (ICASSP), vol. 4, pp. IV–657 (2007)

3. Bahl, L., Brown, P., De Souza, P., Mercer, R.: Maximum mutual information estimation of
hidden markov model parameters for speech recognition. In: Proceedings of International
Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 11, pp. 49–52 (1986)

4. Bourlard, H., Morgan, N., Wooters, C., Renals, S.: CDNN: a context dependent neural network
for continuous speech recognition. In: Proceedings of International Conference on Acoustics,
Speech and Signal Processing (ICASSP), vol. 2, pp. 349–352 (1992)

3 Unfair comparison was conducted in several papers that compare the hybrid DNN/HMM system
and the KL-HMM system. The conclusions in these papers are thus questionable.

http://dx.doi.org/10.1007/978-1-4471-5779-3_8


References 115

5. Bourlard, H.,Wellekens, C.J.: Links betweenMarkovmodels andmultilayer perceptrons. IEEE
Trans. Pattern Anal. Mach. Intell. (PAMI) 12(12), 1167–1178 (1990)

6. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Large vocabulary continuous speech recognition with
context-dependent DBN-HMMs. In: Proceedings of International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4688–4691 (2011)

7. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks
for large-vocabulary speech recognition. IEEE Trans. Audio, Speech Lang. Process. 20(1),
30–42 (2012)

8. Godfrey, J.J.,Holliman,E.: Switchboard-1Release 2. LinguisticDataConsortium,Philadelphia
(1997)

9. Godfrey, J.J., Holliman, E.C.,McDaniel, J.: Switchboard: telephone speech corpus for research
and development. In: Proceedings of International Conference onAcoustics, Speech and Signal
Processing (ICASSP), vol. 1, pp. 517–520 (1992)

10. Hennebert, J., Ris, C., Bourlard, H., Renals, S., Morgan, N.: Estimation of global posteriors
and forward-backward training of hybrid hmm/ann systems (1997)

11. Hermansky, H., Ellis, D.P., Sharma, S.: Tandem connectionist feature extraction for conven-
tional HMM systems. In: Proceedings of International Conference on Acoustics, Speech and
Signal Processing (ICASSP), vol. 3, pp. 1635–1638 (2000)

12. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic model-
ing in speech recognition: the shared views of four research groups. IEEE Signal Process.
Mag. 29(6), 82–97 (2012)

13. Hwang, M., Huang, X.: Shared-distribution hidden Markov models for speech recognition.
IEEE Trans. Speech Audio Process. 1(4), 414–420 (1993)

14. Kapadia, S., Valtchev, V., Young, S.: MMI training for continuous phoneme recognition on the
TIMIT database. In: Proceedings of International Conference on Acoustics, Speech and Signal
Processing (ICASSP), vol. 2, pp. 491–494 (1993)

15. Kingsbury, B., Sainath, T.N., Soltau, H.: Scalable minimum bayes risk training of deep neural
network acousticmodels using distributed hessian-free optimization. In: Proceedings ofAnnual
Conference of International Speech Communication Association (INTERSPEECH) (2012)

16. Kumar, N., Andreou, A.G.: Heteroscedastic discriminant analysis and reduced rank HMMs for
improved speech recognition. Speech Commun. 26(4), 283–297 (1998)

17. Morgan, N., Bourlard, H.: Continuous speech recognition using multilayer perceptrons with
hidden Markov models. In: Proceedings of International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 413–416 (1990)

18. Morgan, N., Bourlard, H.A.: Neural networks for statistical recognition of continuous speech.
Proc. IEEE 83(5), 742–772 (1995)

19. Ostendorf, M., Digalakis, V.V., Kimball, O.A.: From HMM’s to segment models: a unified
view of stochastic modeling for speech recognition. IEEE Trans. Speech Audio Process. 4(5),
360–378 (1996)

20. Povey, D.: Discriminative Training for Large Vocabulary Speech Recognition. Ph.D. thesis,
Cambridge University Engineering Department, Cambridge (2003)

21. Povey,D.,Kanevsky,D.,Kingsbury,B.,Ramabhadran,B., Saon,G.,Visweswariah,K.:Boosted
MMI for model and feature-space discriminative training. In: Proceedings of International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4057–4060 (2008)

22. Povey, D., Kingsbury, B., Mangu, L., Saon, G., Soltau, H., Zweig, G.: FMPE: discrimina-
tively trained features for speech recognition. In: Proceedings of International Conference on
Acoustics, Speech and Signal Processing (ICASSP), vol. 1, pp. 961–964 (2005)

23. Povey, D., Woodland, P.C.: Minimum phone error and I-smoothing for improved discrimina-
tive training. In: Proceedings of International Conference on Acoustics, Speech and Signal
Processing (ICASSP), vol. 1, pp. I-105 (2002)

24. Robinson,A.J., Cook,G., Ellis, D.P., Fosler-Lussier, E., Renals, S.,Williams,D.: Connectionist
speech recognition of broadcast news. Speech Commun. 37(1), 27–45 (2002)



116 6 Deep Neural Network-Hidden Markov Model Hybrid Systems

25. Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-dependent deep
neural networks. In: Proceedings of Annual Conference of International Speech Communica-
tion Association (INTERSPEECH), pp. 437–440 (2011)

26. Senior, A., Heigold, G., Bacchiani, M., Liao, H.: GMM-free DNN training. In: Proceedings of
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2014)

27. Su, H., Li, G., Yu, D., Seide, F.: Error back propagation for sequence training of context-
dependent deep networks for conversational speech transcription. In: Proceedings of Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013)

28. Trentin, E., Gori,M.: A survey of hybrid ANN/HMMmodels for automatic speech recognition.
Neurocomputing 37(1), 91–126 (2001)

29. Yu, D., Deng, L., Dahl, G.: Roles of pre-training and fine-tuning in context-dependent DBN-
HMMs for real-world speech recognition. In: Proceedings of Neural Information Processing
Systems (NIPS) Workshop on Deep Learning and Unsupervised Feature Learning (2010)

30. Yu,D., Ju,Y.C.,Wang,Y.Y., Zweig,G.,Acero,A.:Automated directory assistance system-from
theory to practice. In: Proceedings of Annual Conference of International Speech Communi-
cation Association (INTERSPEECH), pp. 2709–2712 (2007)

31. Zhang, B., Matsoukas, S., Schwartz, R.: Discriminatively trained region dependent feature
transforms for speech recognition. In: Proceedings of International Conference on Acoustics,
Speech and Signal Processing (ICASSP), vol. 1,pp. I–I (2006)

32. Zhu, Q., Chen, B., Morgan, N., Stolcke, A.: Tandem connectionist feature extraction for con-
versational speech recognition. In: Machine Learning for Multimodal Interaction, vol. 3361,
pp. 223–231. Springer, Berlin (2005)



Chapter 7
Training and Decoding Speedup

Abstract Deep neural networks (DNNs) havemany hidden layers each ofwhich has
many neurons. This greatly increases the total number of parameters in themodel and
slows down both the training and decoding. In this chapter, we discuss algorithms
and engineering techniques that speedup the training and decoding. Specifically,
we describe the parallel training algorithms such as pipelined backpropagation algo-
rithm, asynchronous stochastic gradient descend algorithm, and augmentedLagrange
multiplier algorithm. We also introduce model size reduction techniques based on
low-rank approximation which can speedup both training and decoding, and tech-
niques such as quantization, lazy evaluation, and frame skipping that significantly
speedup the decoding.

7.1 Training Speedup

Speech recognition systems are typically trained with thousand or even tens of
thousand hours of speech data. Since we extract one frame of feature every 10ms,
every 24 h of data translate to

24 h × 60min/h × 60 s/min × 100 frames/s = 8.64million frames,

and 1,000 h of data are equivalent to 360 million frames (or samples). This is huge
especially considering at the same time the size of the deep neural networks (DNNs).
Techniques that can speedup the training is thus very important.

The training speedmay be boosted by using high-performance computing devices
such as general purpose graphical processing units (GPGPUs) and/or using better
algorithms that can reduce model parameters, converge faster, or take advantage
of multiple processing units. From our experience, we have found that GPGPUs
perform significantly faster than multicore CPUs and are preferred platforms for
training DNNs.

© Springer-Verlag London 2015
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7.1.1 Pipelined Backpropagation Using Multiple GPUs

It is well known that minibatch based stochastic gradient descend (SGD) training
algorithm can easily scale to large datasets on a single computing device. However,
the need to use minibatches of only few hundred samples makes parallelization
difficult. This is because the model is updated after each minibatch and requires
prohibitive bandwidth if the naive parallelization across data is used. For example,
a typical 2kx7 (7 hidden layers each with 2k neurons) CD-DNN-HMM has around
50–100million floating parameters or 200–400million bytes. Each minibatch would
require the distribution of 400MBworth of gradients and gathering another 400MB
of model parameters, per server. If each minibatch takes about 500ms to compute
which is easy to achieve onGPGPUs, we get close to the PCIe-2 limit (about 6 GB/s).

The minibatch size, however, is typically determined by two factors. Smaller
minibatch sizemeansmore frequent update of themodel but alsomeans less effective
usage of the GPU’s computing power. Larger minibatch can be more efficiently
computed but the whole training process requires more passes over the training
set. An optimal minibatch size can be obtained by balancing these two factors.
Figure7.1 shows runtime (right y-axis) and early frame accuracies (left y-axis) for
different minibatch sizes (x-axis) after seeing 12 h of data. In these experiments, if
the minibatch size is larger than 256 the minibatch size was set to 256 for the first
2.4 h of data and then increased to the actual size. It can be seen that the optimal
minibatch size is in the 256–1,024 range.

If NVidia S2090 (hosted on T620), the best GPU listed in Fig. 7.1, is used, getting
a good performingDNN trainedwith the cross-entropy criterion and 300 h of training
data costs about 15 days. If 2,000 h of data are used, the total time is increased to 45
days. Note that the total time is increased by about 3 times instead of 2,000/300≈
6.7 times. This is because although each pass of the data costs 6.7 times, it takes

Fig. 7.1 Relative runtime for different minibatch sizes and GPU/CPU model types, and corre-
sponding frame accuracy measured after seeing 12 h of data. Left y-axis frame accuracy; right
y-axis runtime relative to C1060 with minibatch size of 2,048 (Figure from Chen et al. [5], permit-
ted to use by ISCA)
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less passes when trained with SGD. The training time can be reduced to about
20 days if the newer GPU model such as K20X is used. Even with this new GPU,
however, trainingwith 20Khours of data still takes over twomonths. Parallel training
algorithm thus is very important to support training with large datasets.

Let’s denote K the number of GPUs (for example, 4), T the size of a mini-
batch (like 1,024), N the dimensions of all hidden layers , e.g., 2,048, and J the
output dimension (number of senones), e.g., 9,304. If we use the simple classic
map-reduce [7] approach which achieves parallelization by splitting the training
data, it would require accumulation/redistribution of gradients/models of the dimen-
sion of the entire model to/from a master server to the other K − 1 GPUs for each
minibatch. On the shared bus between GPGPUs, bandwidth per minibatch is of
O(N · (T + 2(L · N + J )(K − 1))). A tree-structured communication architecture
could reduce it to O(N · (T + 2(L · N + J )�log2 K �)), where �x� is the minimum
integer that is larger than or equal to x .

Alternatively, we can partition each layer’s model parameters into stripes and
distribute stripes in different computing nodes. In this node parallelization approach,
eachGPUholds one out of K vertical stripes of each layer’s parameters and gradients.
Model update happens only locally within each GPU. In forward computation, each
layer’s input v�−1 gets distributed to all GPUs, each of which computes a slice of
the output vector v�. The slices are then distributed to all other GPUs for computing
the next layer. In backpropagation, error vectors are parallelized as slices, but the
resulting matrix products from each slice are partial sums that need to be further
summed up. As a result, in both forward computation and backpropagation, each
vector is transferred K −1 times. The bandwidth is ofO(N · (K −1) · T · (2L +1)).

The pipelined backpropagation [5, 18] avoids themultiple copying of data vectors
of the striping method, by distributing the layers across GPUs to form a pipeline.
Data, instead of model, flows from GPU to GPU. All GPUs work simultaneously on
the data they have. As an example, in Fig. 7.2, the two-hidden-layer DNN is split and

Forward Pass Backward Pass

Mini Batch n

Mini Batch n-1

Mini Batch n-2

Mini Batch n-5

Mini Batch n-4

Mini Batch n-3

Fig. 7.2 Illustration of a pipelined parallelization paradigm
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stored in three GPUs. When the first batch of training data comes in, it’s processed
in GPU1. The activations (outputs) of hidden layer 1 is then passed to GPU2 for
processing. At the same time, a new batch comes in and is processed in GPU1. After
three batches, all GPUs are occupied. This suggests a speedup of three if all layers
are balanced. The backpropagation pass is processed in the similar way. After six
batches, all GPUs process both a forward batch and a backward batch. Since GPUs
use the single instructionmultiple data (SIMD) architecture, we can update themodel
first and then do the forward pass at each layer. This guarantees that the most recently
updated weights are used when the forward computation is conducted to reduce the
delayed-update problem we will mention below.

In the pipeline architecture, each vector travels twice per GPU, once for forward
computation and once for backpropagation. The bandwidth is O(N · T · (2K − 1)),
which is cheaper than data parallelization and striping. If the number of layers L is
larger than the number of GPUs K , you may group several layers in the same GPU.
Lastly, asynchronous data transfer and appropriate order of execution allows most
data transfers to happen in parallel to computation, which can reduce the effective
communication time to close to zero.

Note that the efficiency comes with a cost. This is because there is a mismatch
between the weights used to do forward computation and that used to do backpropa-
gation. For example, the weights used for forward computation of batch n on GPUs
1, 2, and 3 are updated after batch n − 5, n − 3, and n − 1, respectively. However,
when computing the gradients, these weights have already been further updated on
batches n − 1 and n − 2, respectively on GPUs 2 and 1, although on GPU3 they are
the same. This means in lower layers, due to the delay in the pipeline process, the
gradients calculated are not accurate. Based on this analysis, we can consider the
delayed update as a special complicated momentum technique in which the update
(smoothed gradient) is a function of previous models and gradients. For this reason,
when the pipeline is too long performance degradation can be observed if the same
minibatch size is used [5]. To alleviate the side effect of the delayed update, we need
to cut the minibatch size.

The key to achieve great speedup is to balance the computation on each GPU.
If the number of layers is a plural of the number of GPUs and all layers have the
same dimension, balancing is trivial. However, in CD-DNN-HMMs the softmax
layer typically dominates the number of parameters. This is because the number of
senones is often around 10K and the hidden layer size is typically around 2K. To
balance the computation, we need to use stripe for the softmax layer and pipeline for
the rest.

Table7.1, quoted from Chen et al. [5], shows training runtime using up to 4 GPUs
(NVidia Tesla S2090) in a single server (Dell PowerEdge T620), measured for 429
input feature dimension, L = 7 hidden layers, N = 2,048 hidden dimensions, and
J = 9,304 senones. From this table, we can observe that speedups of 1.7–1.9 can be
achieved on dual GPUs (e.g., reducing runtime from 61 to 33 min for minibatch size
of 512), at no accuracy loss despite its delayed-update approximation. To achieve
this speedup, GPU1 contains five weight matrices and GPU2 has only two due
to the unbalanced softmax layer. The computation time ratio on these two GPUs
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Table 7.1 Training runtime in minutes per 24 h of data for different parallelization configurations
using pipelined backpropagation

Method # GPUs Minibatch size

256 512 1024

Baseline (single GPU) 1 68 61 59

Pipeline (0..5; 6..7) 2 36 33 31

Pipeline (0..2; 3..4; 5..6;7) 4 32 29 [27]

Pipeline + striped top layer (0..3; 4..6; 7L; 7R) 4 20 18 [[18]]

[[·]] denotes divergence, and [·] denotes a greater than 0.1% word error rate (WER) loss on the test
set (Quoted from Chen et al. [5])

are (429 + 5 × 2,048) × 2,048:(2,048 + 9,304) × 2,048 = 0.94:1 and thus are
very balanced. Going to 4 GPUs using pipeline alone barely helps. The overall
speedup remains below 2.2 (e.g.,~61 vs.~29 min). This is because the softmax layer
is 4.5 times larger (9,304 × 2,048 parameters) than the hidden layers (2,0482),
and is thus the limiting bottleneck. The computation time ratio on the four GPUs is
(429 + 2 × 2,048)×2,048:(2×2,048)×2,048:(2×2,048)×2048:9304 × 2048 =
1.1:1:1:2.27. In other words, GPU4 takes twice as time as other GPUs. However,
if pipelined BP is combined with the striping method, which is applied only to
the softmax layer, significant speedup can be achieved. In this configuration, four
GPUs are assigned with layers (0..3; 4..6; 7L; 7R) where L and R denote left and
right stripe respectively. In other words, two GPUs jointly form the top stage of the
pipeline, while the lower 7 layers are pipelined on the other two GPUs. Under this
condition, similar calculation indicates that the computation cost ratio on the four
GPUs is (429 + 3 × 2,048) × 2,048:(3 × 2,048) × 2,048:4,652 × 2,048:4,652 ×
2,048 = 1.07:1:0.76:0.76. At no word error rate (WER) loss, the fastest pipelined
system (18 min to process 24 h of data with minibatch size 512) runs 3.3 times faster
on four GPUs than the fastest single-GPU baseline (59 min to process 24 h of data
with minibatch size 1024), a 3.3 times speedup.

The drawback of the pipelined backpropagation is obvious. The overall speedup
heavily depends on whether you can find a way to balance the computation across
GPUs. In addition, due to the delayed-update effect, It is not easy to extend the same
speedup to more GPUs.

7.1.2 Asynchronous SGD

The model training can be parallelized using another technique referred as
asynchronous SGD (ASGD) [12, 17, 26]. It was first proposed to run across CPU
servers as shown in Fig. 7.3. In this architecture, the DNN model is stored across
several (3 in the figure) computers referred as parameter server pool. The parameter
server pool is the master. The master sends the model parameters to the slaves, each
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Fig. 7.3 Illustration of asynchronous SGD. Shown in the figure is a master server pool and three
slave clusters (Picture courtesy of Erdinc Basci)

of which is consisted of several (4 in the figure) computers. Each slave works on a
subset of the training data. It calculates and sends the gradients of each minibatch to
the master. The master updates the parameters and sends the new values back to the
slave.

Since each computer in the slave contains part of the model, the activations need
to be copied across computers. To reduce the communication cost, themodels need to
have sparse connection between the components stored on different computers. Hav-
ing several computers on the master helps to reduce the communication cost between
the master and slaves since each computer pair only needs to transfer a subset of the
parameters. The key to the success of the ASGD, however, is to use asynchronous
lock-free update. In other words, the parameters on the server is not locked during
updating. When the master gets gradients from several slaves, it updates the model
independently in different threads. When the master sends the new parameter to the
slave, part of the parameters may be updated using gradients sent from several slaves.
At the first glance, this may cause convergence problem. In practice, however, the
parameters converge fine and the model training time is significantly reduced since
each slave does not need to wait for other slaves to finish [12, 17]. The model grad-
ually evolves as it is exposed to random records from the training dataset. A proof
on the convergence of ASGD is given in [17].
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There are several practical issues to consider in the ASGD. First, some slaves
may take longer than others to finish an epoch. As a result, the gradient calculated
on these slaves might be based on a very old model. The simplest approach to
handle this problem is to send a time stamp in all communications. The master just
abandons the outdated gradient and sends the slave the most updated model if the
time stamp difference between that sent from the slave and that on themaster exceeds
a threshold. If a slave is consistently slower, the data assigned to that slave needs to
be redistributed to other slaves. This can be easily done by fetchingminibatches from
the same pool. Second, it is obvious that the delayed-update problem that happens in
the pipelined BP also happens in ASGD. For this reason, we need to either reduce the
number of slaves or reduce the learning rate to compensate for the problem. Either
of these solutions, however, will slow down the training. Third, the delayed-update
problem manifests itself most when the gradients are large, which typically happens
at the early stage of the model training. This problem can be alleviated by a technique
called warm start, which starts the ASGD training from a model trained with one
pass of SGD.

AlthoughASGDworks onCPU clusters [12], the communication cost is very high
and can become the bottleneck. For example, running ASGD on 1,000 distributed
CPU cores perform approximately as fast as 8 GPUs on a single machine. The main
reason to use ASGD on CPUs is to take advantage of the existing CPU clusters and
to train models that cannot fit to GPU memory.

Alternatively, the ASGD algorithm can be applied to GPUs on a single hosting
machine [26]. Since in speech recognition the DNN model can be fit into both CPU
and GPU memory, we can use the hosting machine (CPU) as the master and each
GPU as a slave. Note that with GPU-based ASGD the overall speed is significantly
improved. This is because each minibatch takes much less time on GPUs and the
communication between the GPUs and the hosting machine (through PCIe bus) is
significantly faster than that between CPU machines. Even on GPUs the communi-
cation may still become the bottleneck if the minibatch is too small. This problem
can be addressed by reducing the frequency of data transmission between the master
and the slaves. Instead of updating the model after every minibatch, the GPU slave
can accumulate updated gradients and send them to the master every three to four
minibatches. Since this essentially increased the minibatch size, the learning rate
may need to be reduced to compensate for it.

Table7.2, which is extracted from [26], compares the character error rate (CER)
and training time on 10 h of data between SGD and ASGD on a Chinese task. The
42-dimensional feature is formed from 13-dimensional PLP and a 1-dim pitch with
the first- and second-order derivatives appended. The DNN is trained on a 130-h
dataset and is tuned by another one hour data as development set. Concatenations
of 11 frames are used as input to the DNN, which has 5 hidden layers each with
2,048 neurons. The output layer has 10,217 senones. The systems are evaluated on
two individual test sets, namely clean7k and noise360, which were collected through
mobile microphone under clean and noise environments, respectively. The NVidia
GeForce GTX 690 was used for training. This table indicates that ASGD achieves a
3.2 times speedup on four GPUs compared to the SGD running on a single GPU.
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Table 7.2 Compare character error rate (CER) and training times in minutes per 10 h of data on a
Chinese speech recognition task (Summarized from [26])

CER Time (min)

Clean7K (%) Noise360 (%)

GMM BMMI 11.30 36.56 –

DNN SGD 9.27 26.99 195.1

DNN ASGD (4 GPU) 9.05 25.98 61.1

7.1.3 Augmented Lagrangian Methods and Alternating Directions
Method of Multipliers

It is typically not practical to have more than four GPUs on a single hosting machine.
Even if it does, the speedup achievedwithASGDand pipelinedBP is less desirable on
more than four GPUs due to the delayed update. To support training with even more
data we still need to take advantage of multiple GPU/CPU machines. Augmented
Lagrangian methods (ALMs) [2, 9, 19] aim to address this request.

In the DNN training, we optimize the model parameters θ to minimize the empir-
ical risk J (θ;S) on the training set S. Note that

J (θ;S) =
K∑

k=1

J (θ;Sk), (7.1)

where Sk is the k-th subset of the training data, Sk ∩ Si = ∅,∀k �= i , and
⋃K

k=1 Sk =
S. This suggests we may optimize the model parameters on different subsets using
different processors (either on the same or different computers) independently if
we can guarantee that models trained on different subsets are the same, which can
be enforced by equality constraints. The distributed training problem can thus be
converted into the constrained optimization problem

min
θ,θk

J (θ, θk;S) =
K∑

k=1

min
θ,θk

J (θk;Sk), s.t. θk = θ, (7.2)

where θk are the local model parameters and θ are the global consensus model
parameters.

This constrained problem can be converted into an unconstrained optimization
problem

min
θ,θk ,λk

J (θ, θk, λk;S) =
K∑

k=1

min
θ,θk ,λk

[
J (θk;Sk) + λT

k (θk − θ)
]

(7.3)
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using the Lagrange multiplier method, where λk are Lagrange multipliers or dual
parameters. This constrained problem can be solved using the dual ascent method
if the training criterion is strictly convex and is finite. However, the training criteria
such as cross entropy and mean square error used in the DNNs are not convex. As
the result, the convergence property of the dual ascent formulation is very poor.

To bring robustness to the dual ascent method and to improve convergence prop-
erty, we can add a penalty term to the unconstrained optimization problem so that it
becomes

min
θ,θk ,λk

JALM (θ, θk, λk;S) =
K∑

k=1

min
θ,θk ,λk

[
J (θk;Sk) + λT

k (θk − θ) + ρ

2
‖θk − θ‖22

]
,

(7.4)
where ρ > 0 is called the penalty parameter. This new formulation is called aug-
mentedLagrangianmultiplier.Note that Eq.7.4 can be viewed as the (nonaugmented)
Lagrangian associated with the problem

min
θk

J (θk;S) + ρ

2
‖θk − θ‖22, s.t. θk = θ, (7.5)

which has the solution as that of the original problem Eq.7.2. This problem can be
solved using the alternating directions method of multipliers (ADMM) [3] as

θ t+1
k = min

θk

[
J (θk;Sk) + (

λt
k

)T (
θk − θ t) + ρ

2

∥∥θk − θ t
∥∥2
2

]
, (7.6)

θ t+1 = 1

K

K∑
k=1

(
θ t+1

k + 1

ρ
λt

k

)
, (7.7)

λt+1
k = λt

k + ρ
(
θ t+1

k − θ t+1
)

. (7.8)

Equation7.6 solves the primal optimization problem using the SGD algorithm
distributively. Equation7.7 collects updated local parameters from each processor
and estimates the new global model parameters on the parameter server. Equation7.8
retrieves the global model parameters from the parameter server and updates the dual
parameters.

This algorithm is a batch algorithm. However, it can be applied to minibatches
larger than that typically used in SGD to speedup the training process without intro-
ducing too much communication overhead. Since DNN training is a nonconvex
problem, however, ALM/ADMM often converges to a point that performs slightly
worse than that achieved with the normal SGD algorithm. To close the gap, we need
to initialize the model with SGD (often called warm start), then use ALM/ADMM,
and then finalize the training with SGD, L-BFGS, or Hessian-free algorithm. This
algorithm can also be combined with ASGD or pipelined BP to further speed up the
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training process. The ALM/ADMM algorithm can be used to train not only DNNs
but also other models.

7.1.4 Reduce Model Size

The training speed can be improved not only by using better training algorithms but
also by using smaller models. The naive way of reducing the model size is to use less
hidden layers and less neurons at each layer, which, unfortunately often reduces the
recognition accuracy [6, 21]. An effective model size reduction technique is based
on the low-rank factorization [20, 24].

There are two indications that the weights in the DNNs are approximately low
rank. First, in CD-DNN-HMMs, the DNN’s output layer typically has a large number
of neurons (i.e., 5,000–10,000), equal to or more than the number of senones (tied
triphone states) of an optimal GMM/HMM system, to achieve good recognition
performance.As the result, the last layer contributes about 50%of the parameters and
training computation in the system. However, during the decoding typically only few
output targets are active. It is thus reasonable to believe that those activated outputs are
correlated (i.e., belong to the same set of confusable context-dependentHMMstates).
This suggests that the weight matrix of the output layer has low rank. Second, it has
been shown that only the largest 30–40% of the weights in any layer of the DNNs
are important. The DNN performance does not decrease if the rest of the weights are
set to zero [25]. This indicates that each weight matrix can be approximated with
low-rank factorization without sacrificing the recognition accuracy.

With low-rank factorization, eachweightmatrix can be factorized into two smaller
matrices, thereby significantly reducing the number of parameters in theDNN.Using
low-rank factorization not only reduces the model size but also can constrain the
parameter space and helps to make the optimization more efficient and reduce the
number of training iterations.

Let us denote an m × n low-rank matrix by W. If W has rank r, then there exists
a factorization W = W2W1 where W2 is a rank r matrix of size m × r and W1
is a rank r matrix of size r × n. If we replace matrix W by the multiplication of
matrices W2 and W1, we may reduce the model size and speedup the training if
m ×r +r ×n < m ×n, or alternatively r < m×n

m+n . If we want to reduce the parameter

by a fraction p, we need r <
p×m×n

m+n . When W is replaced by W1 and W2, it is
equivalent to introduce a linear layer W1 followed by a nonlinear layer W2 as shown
in Fig. 7.4. This is because

y = f (Wv) = f (W2W1v) = f (W2h) , (7.9)

where h = W1v is a linear transformation. It is shown in [20] that there is typically
no performance degradation if only the softmax layer is factorized to matrices with
ranks between 128 and 512 for different tasks.
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Fig. 7.4 Illustration of low-rank factorization. Replacing weight matrix W with the multiplication
of two smaller weight matrices W2 and W1 is equivalent to replacing the nonlinear layer W with a
linear layer W1 followed by a nonlinear layer W2

7.1.5 Other Approaches

Other approaches have also been proposed. For example, one can train 4 DNNs each
with 1/4 of the data and then train a top layer network to combine the predictions from
the 4 separate DNNs. Further reduction can be achieved by clustering the senones
and then training a classifier to classify the clusters and a DNN for each cluster of the
senones [27]. Since the output layer size is smaller (only contains senones that belong
to the cluster) and the training set for the individual DNN is also smaller (only frames
related to the output senones are used), the training speed canbe significantly reduced.
It was reported that a 5 times speedup with only 1–2% relative word error reduction
can be achieved on four GPUs [27]. This approach, however, requires additional
computation power at the decoding time since the clustered DNNs are separated and
typically have the same number of hidden layers and hidden layer neurons as the
singe DNN system. In other words, this approach trades decoding time for training
time. Another popular approach is to use the Hessian-free training algorithm [10,
15, 16], which takes much larger batch size and can be easily parallelized across
machines. However, this algorithm is much slower than the SGD on a single GPU
and requires a lot of practical tricks to make it work.

7.2 Decoding Speedup

The large number of parameters that need to be evaluated at every frame also has
the disadvantage of making real-time inference more computationally challenging.
However, careful engineering and clever techniques can significantly improve the
decoding speed. In this section, we discuss the quantization and parallel computa-
tion techniques proposed in [23], the sparse DNN proposed in [25], the low-rank
factorization technique proposed in [24], and the multiframe DNN proposed in [22].
Each of these techniques can improve the decoding speed. The best practice is to
combine these techniques.
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7.2.1 Parallel Computation

The obvious solution to speeding up the decoding time is to parallelize the DNN
computation. This is trivial onGPUs.However, inmany tasks, it ismore economically
efficient to use commodity CPU hardware. Fortunately, modern CPUs often support
instruction sets that can support single instruction multiple data (SIMD) low-level
parallelization. These instructions perform the same multiple operations in parallel
on contiguous data. On Intel andAMDCPUs of the x86 family, they typically operate
on 16 bytes (e.g., 2 doubles, 4 floats, 8 shorts, or 16 bytes) worth of data at a time. By
taking advantage of these new instruction sets, we can greatly improve the decoding
speed.

Table7.3, extracted from [23], summarizes the techniques applicable to the CPU
decoder and the real-time factors (RTFs, defined as the processing time divided by
the playback time) achievable with a DNN configured as 440:2000X5:7969. This is
a typical DNN with 11 frames of features as input. Each frame consists of 40 log-
energies extracted from filterbanks on a Mel frequency scale. Sigmoid nonlinearity
is used in all the 5 hidden layers each of which has 2000 neurons. The output layer
has 7,969 senones. The results were obtained on an Intel Xeon DP Quad Core E5640
machine with Ubuntu OS. CPU scaling was disabled and each run was performed a
minimum of 5 times and averaged.

From the table, it is clear that the naive implementation would require 3.89 real
time to just compute the posterior probabilities from the DNN. Using the floating-
point SSE2 instruction set, which operates on 4 floats at a time, the decoding time can
be reduced significantly to 1.36 real time. However, this is still very expensive and
slower than real time. In contrast, we may alternatively linearly quantize the 4-byte
floating-point values of the hidden activations (constrained within (0, 1) if sigmoid
activation function is used) to unsigned char (1 byte) and the weight values to signed
char (1 byte). The biases can be encoded as 4-byte integer, and the input remains
the floating point. This quantization technique can reduce the time to 1.52 real time

Table 7.3 Real-time factor (RTF) on a typical DNN (440:2000X5:7969) used in speech recognition
with different engineering optimization techniques (Summarized from Vanhoucke et al. [23])

Technique Real-time factor Note

Floating-point baseline 3.89 Baseline

Floating-point SSE2 1.36 4-way parallelization (16 bytes)

8-bit quantization 1.52 Activation: unsigned char; Weight: signed char

Integer SSSE3 0.51 16-way parallelization

Integer SSE4 0.47 Faster 16-32 conversion

Batching 0.36 Batches over tens of milliseconds

Lazy evaluation 0.26 Assume 30% active senones

Batched lazy evaluation 0.21 Combine batching and lazy evaluation
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even without using SIMD instructions. Quantization also reduced the model size to
1/3–1/4.

When the integer SSSE3 instruction set is applied to the 8-bit quantized values,
which allows for 16-way parallel computation, additional 2/3 of time is reduced and
the overall computation time is reduced to 0.51 real time. Using the integer SSE4
instruction set, which introduces one small optimization with a single instruction for
16–32-bit conversion, a slight gain can be observed and the time is reduced to 0.47
real time.

In speech recognition, even in the online recognition mode, it is common to
incorporate a lookahead of a few hundred milliseconds, especially in the beginning
of an utterance, to help improve runtime estimates of speech and noise statistics. This
means process frames in small batches over tens ofmillisecondswill not affect latency
too much. To take full advantage of batching, the batches have to be propagated
through the neural network layers in bulk, so that every linear computation becomes
a matrix–matrix multiply which can take advantage of CPU caching of both weights
and activations. Using batching can further reduce the computation time to 0.36 real
time.

One last trick to further improve the decoding speed is to compute the senone
posteriors only if needed. It is well known that during decoding, at every frame, only
a fraction (25 to 35%) of the state scores ever need to be computed. In the GMM–
HMM system, this can be easily exploited since every state has its own, small, set
of Gaussians. In the DNN, however, all the hidden layers are shared and need to be
computed even if only one state is active, except the last layer, in which only the
neurons corresponding to the necessary state posteriors need to be computed. This
means we can lazily evaluate the output layer. Evaluating the output layer in a lazy
manner, however, adds inefficiency to the matrix computation and hence introduces
a small fixed cost of about 22% relatively. Overall, using lazy evaluation (without
batching) can reduce the time to 0.26 real time since the output layer dominates
(typically account for around 50%) the computation.

With lazy evaluation, however, one can no longer compute batches of output
scores for all outputs across multiple frames although we can continue to batch
the computation of all hidden layers. Furthermore, since a state is very likely to be
needed at frame t + 1 if it is needed by the decoder at frame t, it is still possible to
compute a batch of these posteriors for consecutive frames at the same time while
the weights are in cache. Combining lazy evaluation with batch further reduced the
DNN computation time to 0.21 real time.

Overall, the engineering optimization techniques achieved near 20 times speedup
(reduced from3.89 real time to 0.21 real time) compared to the naive implementation.
Note that this 0.21 real time is only the DNN posterior probability computation time.
The decoder also needs to search over all possible state sequences which typically
adds another 0.2–0.3 real time on average and 06–0.7 real time for extreme cases
depending on the language model perplexity and beam used in the search. Overall,
the complete decoding time is within real time without loss of accuracy.
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7.2.2 Sparse Network

On some devices, such as smart phones, SIMD instructions may not be available.
Under those conditions, we still can use 8-bit quantization to improve the decoding
speed. However, we cannot use many other parallel computation techniques we
discussed in the Sect. 7.2.1.

Fortunately, by inspecting the fully connected DNNs after the training we can
notice that a large portion of all connections have very small weights. For example,
in a typical DNN used in speech recognition, the magnitude of 70% of weights
is below 0.1 [25]. This means we may reduce model size and increase decoding
speed by removing connections with small weight magnitude. Note that we do not
observe similar patterns on bias parameters. This is expected since nonzero bias terms
indicate the shift of hyperplanes from the origin. However, given that the number
of bias parameters is very small compared to that of weight parameters, keeping
bias parameters intact does not affect the final model size and decoding speed in a
noticeable way.

There aremanyways to generate sparsemodels. For example, the task of enforcing
sparseness can be formulated as amultiobjective optimization problem sincewewant
to minimize the cross entropy and the number of nonzero weights at the same time.
This two-objective optimization problem can be converted into a single objective
optimization problem with L1 regularization. Unfortunately, this formulation does
not work well with the stochastic gradient descent (SGD) training algorithm often
employed in the DNN training [25]. This is because the subgradient update does not
lead to precise sparse solutions. To enforce a sparse solution, one often truncates the
solutions after each T steps by forcing parameters with magnitude smaller than a
threshold θ to zero [11]. This truncation step, however, is somewhat arbitrary and T
is difficult to select correctly. In general, it is not desirable to take a small T (e.g., 1),
especially when the minibatch size is small, since in that case each SGD update
step only slightly modifies weights. When a parameter is close to zero, it remains so
after several SGD updates and will be rounded back to zero if T is not sufficiently
large. Consequently, truncation can be done only after (a reasonably large) T steps
in the hopes that nonzero coefficients have sufficient time to go above θ . On the
other hand, a large T means that every time the parameters are truncated, the training
criterion will be reduced and will require a similar number of steps to get the loss
compensated.

Another well-known work [8, 13] pruned the weights after training converges
based on the second-order derivatives. Unfortunately, these algorithms are difficult
to scale up to large training set we typically use in speech recognition and their
advantages vanish if additional training iterations are carried out upon the pruned
weights.

A third approach, which performs well and generates good model is to formulate
the problem as an optimization problem with a convex constraint

‖W‖0 ≤ q, (7.10)
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where q is a threshold value for the maximal number of nonzero weights allowed.
This constrained optimization problem is hard to solve. However, an approximate

solution can be found following two observations: First, after sweeping through the
full training set several times the weights become relatively stable—they tend to
remain either large or small magnitudes. Second, in a stabilized model, the impor-
tance of the connection is approximated well by the magnitudes of the weights.1This
leads to the very simple yet efficient and effective algorithm.

We first train a fully connected DNN by sweeping through the full training set
several times. We then keep only the connections whose weight magnitudes are in
top q. Continue training the DNN and keep the same sparse connections unchanged.
This can be achieved either bymasking the pruned connections or roundweights with
magnitude below min{0.02, θ/2} to zero, where θ is the minimal weight magnitude
that survived the pruning and 0.02 is determined by examining the patterns ofweights
in the fully connected network. The masking approach is cleaner but requires storage
of a huge masking matrix. The rounding alternative is cheaper but trickier since it is
important to round only weights smaller than min{0.02, θ/2}, instead of θ , to zero.
This is because the weights may shrink and be suddenly removed if not doing so.
In addition, after the pruning it is very important to continue training to remedy the
accuracy degradation caused by sudden removal of the small weights.

Tables7.4 and 7.5, provided in [25], summarize the experimental results on the
voice search (VS) and Switchobard (SWB) datasets described in Sect. 6.2.1. By
exploiting the sparseness property in themodel, we can obtain 0.2–0.3% error reduc-
tion and simultaneously reduce the connections to only 30% on both the VS and
SWB datasets. Alternatively, we can reduce the number of weights to 12% and

Table 7.4 Model size, computation time, and sentence error rate (SER)with andwithout sparseness
constraints on the VS dataset

Acoustic model # nonzero % nonzero Hub5’00 FSH RT03S SWB

params params (%) (%)

GMM MPE 1.5M – 34.5 36.2

DNN, CE 19.2M Fully connected 28.0 30.4

12.8M 67% 27.9 30.3

8.8M 46% 27.7 30.1

6.0M 31% 27.7 30.1

4.0M 21% 27.8 30.2

2.3M 12% 27.9 30.4

1.0M 5% 29.7 31.7

The fully connected DNN contains 5 hidden layers each with 2,048 neurons. The OOV rate for both
the dev and test sets is about 6% (Summarized from Yu et al. [25])

1 More precisely, it can be approximated by the magnitudes of the product of the weights and the
input values. However, the magnitude of the input values are relatively uniform within each layer
since on the input layer, features are normalized to zero-mean and unit-variance, and hidden layer
values are probabilities.

http://dx.doi.org/10.1007/978-1-4471-5779-3_6
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Table 7.5 Model size, computation time, and word error rate (WER) with and without sparseness
constraints on the SWB dataset

Acoustic model # nonzero % nonzero Hub5’00 FSH RT03S SWB

params params (%)

GMM, BMMI 29.4M – 23.6% 27.4

DNN, CE 45.1M Fully connected 16.4% 18.6

31.1M 69% 16.2v 18.5

23.6M 52% 16.1% 18.5

15.2M 34% 16.1% 18.4

11.0M 24% 16.2% 18.5

8.6M 19% 16.4% 18.7

6.6M 5% 16.5% 18.7

The fully connected DNN contains 7 hidden layers each with 2,048 neurons (Summarized from Yu
et al. [25])

19%, respectively, on the VS and SWB datasets, without sacrificing recognition
accuracy. In that case, the CD-DNN-HMM is only 1.5 and 0.3 times as large as the
CD-GMM-HMM on the VS and SWB datasets, respectively, and takes only 18%
and 29% of the model size compared to the fully connected models. This translates
to reducing the DNN computation to only 14% and 23% of that needed by the fully
connected models on the VS and SWB datasets respectively if SIMD instructions
are not available.

The sparse weights learned generally have random patterns. This prevents it from
being very efficient both in storage and in computation even if high degree of sparse-
ness can be achieved, especially when SIMD parallelization is used.

7.2.3 Low-Rank Approximation

The low-rankmatrix factorization technique can reduce not only the training time but
also the decoding time. In Sect. 7.1.4, we mentioned that we can replace the softmax
layer with two smaller low-rank matrices even before training started. However, this
approach has several limitations. First, it is not easy to know beforehand the rank to
keep and thus it requires building models with different rank r . Second, if we use
the low-rank technique in the lower layers, the performance of the final model may
become very bad [20]. In other words, we cannot reduce the size and decoding time
for the lower layers. However, the lower layers need to be calculated even if there is
only one activated senone. It is thus very important to reduce the size of the lower
layers.

If we only care about the decoding time, we can determine the rank r by using
singular value decomposition (SVD) [24]. Once we have trained a fully connected
model, we can convert each m × n (m ≥ n) weight matrix W with SVD
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Wm×n = Um×n�n×nVT
n×n, (7.11)

where� is a diagonal matrix consisted of nonnegative singular values in the decreas-
ing order, U and VT are unitary, the columns of which form a set of orthonormal
vectors, which can be regarded as basis vectors. The m columns of U and the n
columns of V are called the left-singular vectors and right-singular vectors of W,
respectively. Since we have discussed that a large percentage of the weights are close
to zero, many singular values should be close to zero. Experiments have shown that
for a typical weight matrix in the DNN, 40% of the top singular values account for
80% of total singular value. If we only keep top k singular values, the weight matrix
W can be approximated with two smaller matrices

Wm×n � Um×k�k×kVT
k×n = W2,m×kW1,r×n, (7.12)

where W2,m×k = Um×k and W1,r×n = �k×kVT
k×n . Note that after dropping small

singular values, the approximation error increases. It thus is important to continue
training the model after the low-rank factorization similar to the sparse network
approaches. Experiments have shown that no or little performance loss was observed
if we only keep 30% of the model size [24]. This result also agrees with the observa-
tion made in the sparse network [25]. However, the low-rank factorization approach
is preferred between two since it can take advantage of SIMD architecture easily and
achieve better speedup overall across different computing devices.

7.2.4 Teach Small DNN with Large DNN

The low-rank approximation technique can only reduce the model size and decoding
time by 2/3. To further reduce the size so that the model can be run on the small
devices without sacrificing accuracy, some other techniques need to be exploited.
The most effective approach is to teach the small DNN with output from a large
DNN so that the small DNN can generate the same output as that of the large DNN.
This technique was first proposed by Buciluǎ et al. [4] to compress models. It was
later proposed by Ba and Caruana [1] to emulate the output of DNNs with shallow
MLPs. By combining DNNs trained with different random seeds, they can get a very
complicated model that performs much better than the single DNN. They then pass
the whole training set through this complicated model to generate the outputs and
train the shallow model with the minimum square error criterion to approach the
outputs from the large model. By doing this, the single shallow model can perform
as good as the single DNN.

Li et al. [14] further extended this approach in two ways. First, they trained the
small model by minimizing the DL divergence between the output distribution of
the small and large models. Second, they not only pass the labeled data but also
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unlabeled data through the large model to generate training data to train the small
model. They found out that using the additional unlabeled data is very helpful to
reduce the performance gap between the large and small models.

7.2.5 Multiframe DNN

In CD-DNN-HMMs, we estimate the senone posterior probability for each 10ms
frame covering a window of 9–13 frames of input. However, speech is a rather
stationary process when analyzed at a 10ms frame rate. It is natural to believe that the
predictions between adjacent frames are very similar. A simple and computationally
efficient approach to take advantage of time correlations between feature frames is
to simply copy the predictions from previous frame and thus cut the computation
by 2. This simple approach, discussed in [22] and referred as frame-asynchronous
DNN, performs surprisingly well.

An improved approach, referred as multiframe DNN (MFDNN), is proposed in
[22]. Instead of copying the state predictions from the previous frame as that in
the frame-asynchronous DNN, the MFDNN predicts both the frame label at time t
and that at adjacent frames with the same input window at frame t. This is done by
replacing the single softmax layer in the conventional DNN with several softmax
layers each for a different frame label. Since all the softmax layers share the same
hidden layers, MFDNN can cut the hidden layer computation time.

For example, in [22], the MFDNN jointly predicts labels for frames t to t − K ,
whereK is the number of lookback frames. This is a special case ofmultitask learning.
Note that here the MFDNN jointly predicts past (t − 1, . . . , t − K ) instead of future
(t + 1, . . . , t + K ) frames. This is because in [22] a much longer context window in
the past (20 frames) than that in the future (5 frames) was used. As the result, the input
of the DNN provides more balanced context for predicting past frame labels than
future frame labels. In most implementations of DNNs [6, 21], the input window has
balanced context of the past and future frames. For these DNNs, the jointly predicted
frame labels can from both past and future frames. Note that if K is large the overall
latency of the system will be increased. Since latency will affect users’ experience,
K is typically set to a value less than 4 so that the additional latency introduced by
the MFDNN is less than 30ms.

Training suchMFDNNs can be performed by backpropagating the errors from all
softmax layers jointly through the network. When doing so the gradient magnitudes
will increase since the error signal is multiplied by the number of jointly predicted
frames. To maintain the convergence property the learning rate might have to be
reduced.

The MFDNN performs better than the frame-asynchronous DNN and performs
as good as the baseline system. It was reported [22] that a system which predicts
jointly 2 frames at a time achieved a 10% improvement in the query processing rate
at no cost in accuracy or median latency, compared to an equivalent baseline system.
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A system which predicts jointly 4 frames achieved a further 10% improvement in
the query processing rate at a cost of a 0.4% absolute increase in word error rate.
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Chapter 8
Deep Neural Network Sequence-Discriminative
Training

Abstract The cross-entropy criterion discussed in the previous chapters treats each
frame independently. However, speech recognition is a sequence classification prob-
lem. In this chapter, we introduce the sequence-discriminative training techniques
that match better to the problem. We describe the popular maximum mutual infor-
mation (MMI), boostedMMI (BMMI), minimum phone error (MPE), and minimum
Bayes risk (MBR) training criteria, and discuss the practical techniques, includ-
ing lattice generation, lattice compensation, frame dropping, frame smoothing, and
learning rate adjustment, to make DNN sequence-discriminative training effective.

8.1 Sequence-Discriminative Training Criteria

In the previous chapters, deep neural networks (DNNs) for speech recognition are
trained to classify individual frames based on a cross-entropy (CE) criterion, which
minimizes the expected frame error. However, speech recognition is a sequence
classification problem. Sequence-discriminative training [8, 9, 11, 15, 16] seeks to
better match the maximum a posteriori (MAP) decision rule of large vocabulary
continuous speech recognition (LVCSR) by considering sequence (inter-frame) con-
straints from hidden Markov models (HMMs), dictionary, and the language model
(LM). Intuitively better recognition accuracy can be achieved if the CD-DNN-HMM
speech recognizer is trained using sequence-discriminative criteria such asmaximum
mutual information (MMI) [1, 7], boostedMMI (BMMI) [13], minimum phone error
(MPE) [14], or minimumBayes risk (MBR) [2] that have been proven to obtain state-
of-the-art results in the GMM-HMM framework. Experimental results have shown
that sequence-discriminative training can obtain from 3 to 17% relative error rate
reduction against the CE-trained models depends on the implementation and the
dataset.

8.1.1 Maximum Mutual Information

The MMI criterion [1, 7] used in automatic speech recognition (ASR) systems aims
at maximizing the mutual information between the distributions of the observation
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sequence and the word sequence, which is highly correlated with minimizing the
expected sentence error. Let us denote om = om

1 , . . . , om
t , . . . , om

Tm
and wm =

wm
1 , . . . , wm

t , . . . , wm
Nm

the observation sequence and the correct word transcrip-
tion of the mth utterance, respectively, where Tm is the total number of frames in
utterance m, and Nm is the total number of words in the transcription of the same
utterance. The MMI criterion over the training set S ={(om, wm) |0 ≤ m < M} is:

JMMI (θ;S) =
M∑

m=1

JM M I
(
θ; om, wm)

=
M∑

m=1

logP
(
wm |om; θ

)

=
M∑

m=1

log
p (om |sm; θ)κ P (wm)∑
w p (om |sw; θ)κ P (w)

, (8.1)

where θ is the model parameter including DNN weight matrices and biases, sm =
sm
1 , . . . , sm

t , . . . , sm
Tm

is the sequence of states corresponding to wm , and κ is the
acoustic scaling factor. Theoretically the sum in the denominator should be taken
over all possible word sequences. In practice, however, the sum is constrained by
the decoded speech lattice for utterance m to reduce the computational cost. Note
that the gradient of the criterion (8.1) with regard to the model parameters θ can be
computed as

∇θ JM M I
(
θ; om, wm) =

∑
m

∑
t

∇zL
mt

JM M I
(
θ; om, wm) ∂zL

mt

∂θ

=
∑

m

∑
t

ëL
mt

∂zL
mt

∂θ
, (8.2)

where the error signal ëL
mt is defined as∇zL

mt
JM M I (θ; om, wm) and zL

mt is the softmax
layer’s excitation (the value before softmax is applied) for utterance m at frame t .

Since ∂zL
mt

∂θ
is irrelevant to the training criterion, the only difference the new train-

ing criterion introduces compared to the frame-level cross-entropy training criterion
(4.11) is the way the error signal is calculated. In the MMI training, the error signal
becomes

ëL
mt (i) = ∇zL

mt (i)
JM M I

(
θ; om, wm)

=
∑

r

∂ JM M I (θ; om, ym)

∂ log p
(
om

t |r) ∂ log p
(
om

t |r)
∂zL

mt (i)

=
∑

r

κ

(
δ
(
r = sm

t

) −
∑

w:st=r
p (om |s)κ P (w)∑

w p (om |sw)κ P (w)

)
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×∂ log P
(
r |om

t

) − log P (r) + log p
(
om

t

)
∂zL

mt (i)

=
∑

r

κ
(
δ
(
r = sm

t

) − γ̈DEN
mt (r)

) ∂ log vL
mt (r)

∂zL
mt (i)

= κ
(
δ
(
i = sm

t

) − γ̈DEN
mt (i)

)
, (8.3)

where ëL
mt (i) is the i th element of the error signal, vL

mt (r) = P
(
r |om

t

) =
softmaxr

(
zL

mt

)
is the r th output of the DNN,

γ̈DEN
mt (r) =

∑
w:st=r

p (om |s)κ P (w)∑
w p (om |sw)κ P (w)

(8.4)

is the posterior probability of being in state r at time t , computed over the denominator
lattices for utterance m, P (r) is the prior probability of state r, p

(
om

t

)
is the prior

probability of observing om
t , and δ (•) is the Kronecker delta. Both P (r) and p

(
om

t

)
are independent of zL

mt . Here we assumed that the nominator reference state labels
are obtained through a forced alignment of the acoustics with the word transcript. If
we consider all possible state sequences that lead to the reference transcription wm ,
we can use the forward-backward algorithm over the word reference to obtain the
numerator occupancies γ̈NUM

mt (i) to replace δ
(
i = sm

t

)
.

If your DNN training algorithm is defined to minimize an objective function,
you can, instead of maximizing the mutual information, minimize JNMMI (θ;S) =
−JM M I (θ;S), in which case the error signals are negated. Note that criterion similar
to MMI has been explored in the early ANN/HMM hybrid work [6].

8.1.2 Boosted MMI

The boosted MMI (BMMI) [13] criterion

JBMMI (θ;S) =
M∑

m=1

JB M M I
(
θ; om, wm)

=
M∑

m=1

log
P (wm |om)∑

w P (w|om) e−bA(w,wm )
(8.5)

=
M∑

m=1

log
p (om |sm)κ P (wm)∑

w p (om |sw)κ P (w) e−bA(w,wm )

is a variant of the MMI objective (8.1) to boost the likelihood of paths that contain
more errors, where b, whose typical value is 0.5, is the boosting factor, and A (w, wm)
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is a raw accuracy measure between word sequences w and wm and can be computed
at word level, phoneme level, or state level. For example, if it ismeasured at the phone
level, it equals to the number of correct phones minus the number of insertions. This
raw accuracy must be approximated efficiently. It has been shown that the BMMI
criterion may be interpreted as incorporating a margin term in the MMI objective
[13]. Since the only difference between the MMI and BMMI objective functions is
the boosting term e−bA(w,wm ) at the denominator, the error signal

...
e L

mt (i) can be
similarly derived as

...
e L

mt (i) = ∇zL
mt (i)

JB M M I
(
θ; om, wm)

= κ
(
δ
(
i = sm

t

) − ...
γ DEN

mt (i)
)

, (8.6)

where, different from the MMI criterion, the denominator posterior probability is
computed as

...
γ DEN

mt (i) =
∑

w:st=i
p (om |s)κ P (w) e−bA(w,wm )

∑
w p (om |sw)κ P (w) e−bA(w,wm )

. (8.7)

The extra computation involved in BMMI as opposed to MMI is very small if
A (w, wm) can be efficiently estimated. The only change occurs in the forward-
backward algorithm on the denominator lattice. For each arc in the denominator
lattice, we subtract from the acoustic log-likelihood bA (s, sm) that is corresponding
to the arc. This behave is similar to modifying the language model contribution on
each arc.

8.1.3 MPE/sMBR

The MBR [2, 8] family of objective functions aims at minimizing the expected error
corresponding to different granularity of labels. For example, theMPE criterion aims
to minimize the expected phone error, while state MBR (sMBR) aims to minimize
the expected state error when HMM topology and language models are taken into
consideration. In general, the MBR objective can be written as

JMBR (θ;S) =
M∑

m=1

JMBR
(
θ; om, wm)

=
M∑

m=1

∑
w

P
(
w|om)

A
(
w, wm)

=
M∑

m=1

∑
w p (om |sw)κ P (w) A (w, wm)∑

w′ p
(

om |sw′ )κ

P
(
w′) , (8.8)



8.1 Sequence-Discriminative Training Criteria 141

where A (w, wm) is the raw accuracy between word sequences w and wm . For exam-
ple, for MPE, it is the number of correct phone labels, while for sMBR it is the
number of correct state labels. Similar to that in the MMI/BMMI case, the error
signal is

....
e L

mt (i) = ∇zL
mt (i)

JMBR
(
θ; om, wm)

=
∑

r

∂ JMBR (θ; om, wm)

∂ log p
(
om

t |r) ∂ log p
(
om

t |r)
∂zL

mt (i)

=
∑

r

κ
....
γ DEN

mt (r)
(

Ām (
r = sm

t

) − Ām) ∂ log vL
mt (r)

∂zL
mt (i)

= κ
....
γ DEN

mt (i)
(

Ām (
i = sm

t

) − Ām)
, (8.9)

where Ām is the average accuracy of all paths in the lattice, Ām
(
r = sm

t

)
is the

average accuracy of all paths in the lattice for utterance m that passes through state
r at time t , and

....
γ DEN

mt (r) is the MBR occupancy statistics. For sMBR,

....
γ DEN

mt (r) =
∑

s

δ (r = st ) P
(
s|om)

(8.10)

A
(
w, wm) = A

(
sw, sm) =

∑
t

δ
(
sw

t = sm
t

)
(8.11)

Ām (
r = sm

t

) = E
{

A
(
s, sm) |st = r

} =
∑

s δ (r = st ) P (s|om) A (s, sm)∑
s δ (r = st ) P (s|om)

(8.12)

and

Ām = E
{

A
(
s, sm)} =

∑
s P (s|om) A (s, sm)∑

s P (s|om)
. (8.13)

8.1.4 A Uniformed Formulation

There can be other sequence-discriminative training criteria JSEQ (θ; o, w). If the
criteria are formulated as objective functions to be maximized (e.g., MMI/BMMI)
instead of loss functions to be minimized we can always derive a loss function
to be minimized by multiplying the original objective function by −1. Such loss
functions can always be formulated as a ratio of values computed from two lattices:
the numerator lattice that represents the reference transcription and the denominator
lattice that represents competing hypotheses. The expected occupancies γNUM

mt (i)
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and γDEN
mt (i) for each state i required by the extendedBaum-Welch (EBW) algorithm

are computed with forward-backward passes over the numerator and denominator
lattices, respectively.

Note that the gradient of the loss with respect to state log-likelihood is

∂ JSE Q (θ; om, wm)

∂ log p
(
om

t |r) = κ
(
γDEN

mt (r) − γNUM
mt (r)

)
. (8.14)

Since log p
(
om

t |r) = log P
(
r |om

t

) − log P (r) + log p
(
om

t

)
, by the chain rule,

∂ JSE Q (θ; om, wm)

∂ P
(
r |om

t
) = κ

(
γDEN

mt (r) − γNUM
mt (r)

)
P

(
r |om

t
) . (8.15)

Given that P
(
r |om

t

) = softmaxr
(
zL

mt

)
we get

eL
mt (i) = ∂ JSE Q (θ; om, wm)

∂zL
mt (i)

= κ
(
γDEN

mt (i) − γNUM
mt (i)

)
. (8.16)

This formula can be applied to all the above sequence-discriminative training
criteria as well as new ones [8, 15, 16]. The only difference is the way the occupancy
statistics γNUM

mt (i) and γDEN
mt (i) are computed.

8.2 Practical Considerations

The above discussion seems to indicate that the sequence-discriminative training can
be trivial. The only difference between the sequence-discriminative training and the
frame-level cross-entropy training is themore complicated error-signal computation,
which now involves numerator and denominator lattices. In practice, however, many
practical techniqueswould help and sometimes are critical to obtain good recognition
accuracy.

8.2.1 Lattice Generation

Similar to trainingGMM-HMMsystems, the first step in the sequence-discriminative
training of DNNs is to generate the numerator and denominator lattices. As we have
pointed out above, the numerator lattices are often reduced to forced alignment of the
transcription. It was shown that it is important to generate the lattices (especially the
denominator lattices) by decoding the training data with a unigram LM in the GMM-
HMM [12]. This still holds in the CD-DNN-HMM. In addition, people have found
that it is desirable to use the best model available to generate the lattice and to serve as
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Table 8.1 The effect (WER on Hub5’00 dataset) of the quality of the seed model and the lattice to
the performance of the sequence-discriminative training on SWB 300h task

Model to generate lattice Seed model

CE1 CE2

GMM 15.8% (−2%) –

DNN CE1 (WER 16.2%) 14.1% (−13%) 13.7% (−15%)

DNN CE2 (WER 15.6%) – 13.5% (−17%)

Relative WER reduction over the CE1 model is in parentheses. CE1 trained with the alignment
generated from GMM. CE2 refinement of CE1 model with alignment generated from CE1. (Sum-
marized from Su et al. [15])

the seedmodel for the sequence-discriminative training [15]. SinceCD-DNN-HMMs
often outperform the CD-GMM-HMMs, we should at least use the CD-DNN-HMM
trained with the CE criterion as both the seed model and the model for generating
the alignments and lattices of each training utterance. Since lattice generation is
an expensive process, the lattice is thus typically generated once and reused across
training epochs. Further improvement can be obtained if new alignment and lattices
are generated after each epoch. It is important that all the lattices are regenerated
using the same model when doing so.

Table8.1, based on results extracted from [15], clearly indicates the effect of the
lattice quality and the seed model to the final recognition accuracy. From the table,
we canmake several observations. First, compared to the CE1model trained with the
CE criterion and the alignment generated from the GMM model, the model trained
with the sequence-discriminative training only obtains 2% relative error reduction
if the lattices used are generated from the GMM model. However, we can obtain
13% relative error reduction if the lattice is generated from the CE1 model even
though the same CE1 model is used as the seed model in both conditions. Second,
if the same lattice generated from the CE1 model is used to generate statistics in
the sequence-discriminative training, additional 2% relative error reduction can be
obtained if we use CE2 instead of CE1 model as the seed model. The best result of
17% relative word error rate (WER) reduction can be obtained using the CE2 model
as both the seed model and the model for generating the lattice.

8.2.2 Lattice Compensation

Since the error signal is theweighted difference between the statistics calculated from
the denominator and numerator lattices, the quality of the lattice is thus very impor-
tant. However, even if the beam width used in the lattice generation process is large
it is still impossible to cover all possible competing hypotheses. Actually, if indeed
all competing hypotheses are included, using lattice to constraint the computation of
the denominator lattice can no longer speedup the training process.
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The problem often happens when the reference hypothesis is missing from or
misaligned with the denominator lattice, under which condition the gradient can be
unfairly higher since γDEN

mt (i) is 0. This behavior can be frequently seen for silence
frames since they are likely to be missing from the denominator lattices but occur
very often in the numerator lattices. One of the behaviors introduced by poor lattice
quality is the runaway silence frames. The number of silence frames in the decoding
results increases as the training epoch increases. This results in increased deletion
errors in the decoding result.

There are several ways to fix this problem. The first approach is to remove the
frameswhere the reference hypothesis is not in the denominator latticewhen comput-
ing the gradients. For silence frames, for example, this can be achieved by counting
silence frames as incorrect in A (s, sm) in sMBR which effectively sets the error sig-
nal of these frames to be zero. A more general approach, referred as frame rejection
[16], is to just remove these frames directly. Another approach, which is believed
to perform better, is to augment the lattices with the reference hypothesis [15]. For
example, we can add artificial silence arcs to the lattice, one for each start/end node
pair connected by a word arc, with an appropriate entering probability and without
introducing redundant silence paths.

Figure8.1, shown in [16], is the result on the SWB 110h dataset with and without
using the frame rejection technique. From the figure, we can observe that, without
frame rejection, the MMI training starts overfitting after epoch 3. However, when
frame rejection is used the training is stable even after epoch 8 and better test accuracy
can be achieved.

Figure8.2, based on the results from [15], compares the WER on Hub5’00 using
300h training set with and without using lattice compensation for silences. In this
figure, a relatively large learning rate was used. Without using the silence treatment,
severe overfitting can be observed even at the first epoch. However, when the silence
frames are specially handled we can see great WER reduction at the first epoch and
relatively stable results after that.

Fig. 8.1 Effect of frame rejection (FR)measured asWERonHub5’00when the SWB110h training
set is used. (Figure from Vesely et al. [16], permitted to use by ISCA.)
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Fig. 8.2 WER on Hub5’00 with and without using silence treatment. (Based on the results from
[15])

8.2.3 Frame Smoothing

Even if the lattices are correctly compensated, we can still observe the quick over-
fitting phenomena during the training, which can be easily identified by the diverge
of the sequence training criterion and the frame accuracy computed from the DNN
score alone: The training criterion continues to improve while the frame accuracy
computed from the DNN score alone tanks significantly.While people have hypothe-
sized that the overfitting problem is caused by the sparse lattice (e.g., even the fattest
lattices that can be practically generated reference only about 3% of senones [15]),
we believe this is not the only reason. The overfitting problem may also attribute to
the fact that sequence is in a higher dimensional space than the frames. As such, the
posterior distribution estimated from the training set is more likely to be different
from that in the testing. This problem can be alleviated by making the sequence-
discriminative training criterion closer to the frame-discriminative training criterion,
for example, by using weak LM. The problem can be further alleviated using a tech-
nique referred as frame smoothing (F-smoothing) [15], which instead of minimizing
the sequence-discriminative training criterion alone, minimizing a weighted sum of
the sequence and frame criteria

JF S−SE Q (θ;S) = (1 − H) JCE (θ;S) + H JSE Q (θ;S) , (8.17)

where H is a smoothing factor often set empirically. It has been shown that a
frame/sequence ratio of 1:4 (or H = 4/5) to 1:10 (or H = 10/11) is often effective.
F-smoothing not only reduces the possibility of overfitting but alsomakes the training
process less sensitive to the learning rate. F-smoothing is inspired by I-smoothing
[12] and similar regularization approaches for adaptation [17]. Note that normal
regularization techniques such as L1 and L2 regularization do not help.
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Fig. 8.3 WER on SWB Hub5’00 with and without using F-smoothing in the sequence-
discriminative training of DNNs. (Based on results from [15])

Figure8.3, based on [15], demonstrates the results on SWB Hub5’00 with and
without using F-smoothing. With F-smoothing, it is much less likely to overfit to
the training set. Overall, F-smoothing achieves 0.6% absolute or 4% relative WER
reduction.

8.2.4 Learning Rate Adjustment

The learning rate used in the sequence-discriminative training should be smaller
than that used in the frame cross-entropy training for two reasons. First, the
sequence-discriminative training is often started from the CE-trained model which
has already been well trained and thus requires smaller updates. Second, the
sequence-discriminative training is more prone to overfitting. Using smaller learning
rate can control the convergence more effectively. In practice, people have found that
using a learning rate that is similar to that used in the final stage of CE training to
be effective. For example, Vesely et al. [16] reported that an effective learning rate
of 1e−4 per utterance worked well for both (B)MMI and sMBR, while Su et al. [15]
showed that a learning rate of 1/128,000 per frame (or 0.002 per 256 frames) worked
well when F-smoothing is used. The requirement to choose a good learning rate may
be eliminated if algorithms such as Hessian-free [9] are used.

8.2.5 Training Criterion Selection

There are different observations with regard to the training criterion. Most results
seem to suggest that the training criterion is not critical. For example, Table8.2,which
is extracted from [16], indicates that acrossMMI, BMMI,MPE, and sMBR, theWER
on the SWB Hub5’00 and Hub5’01 datasets are very close although sMBR slightly
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Table 8.2 The effect of
different sequence-
discriminative training
criteria measured as WER on
the Hub5’00 and Hub5’01
datasets when the 300h
training set is used.
(Summarized from [16])

Hub5’00 SWB (%) Hub5’01 SWB (%)

GMM BMMI 18.6 18.9

DNN CE 14.2 14.5

DNN MMI 12.9 13.3

DNN BMMI 12.9 13.2

DNN MPE 12.9 13.2

DNN sMBR 12.6 13.0

outperforms other criteria. Since MMI is best understood and easiest to implement,
it is thus suggested to use MMI if you need to implement one from scratch.

8.2.6 Other Considerations

Sequence-discriminative training is more computationally demanding. As such it
is much slower. For example, a simple CPU-side implementation may increase
runtime 12-fold compared to the frame CE training. Fortunately, with careful engi-
neering, it is possible to achieve significant speedups through parallelized execu-
tion on a GPGPU. To speedup the acoustic-score computation, each arc can be
processed at a separate CUDA thread. The lattice-level forward-backward process-
ing, though, requires special treatment since the computation must be decomposed
into sequential, dependency-free CUDA launches. In an example provided by Su
et al. [15], there are 106 dependency-free node regions (=launches) for a 7.5-second
lattice with 211,846arcs and 6974 nodes at an average of 1,999arcs (=threads per
launch). Moreover, lattice forward/backward and error-signal accumulation require
atomic summation of log-probabilities. This can be emulated throughCUDA’s atomic
compare-and-swap instruction. To reduce target-operand collisions, it has been found
to be critical to shuffle operations into a random-like order.

Further speed improvement can be obtained by using a parallel read-ahead thread
to preload data and by generating lattices using a cluster of CPU computers. In the
runtime experiments conducted by Su et al. [15], it was shown that the overall runtime
increases only by about 70% compared to the CE training (when lattice generation
is not considered) even on fat lattices of nearly 500arcs per frame.

8.3 Noise Contrastive Estimation

In the above discussion, we assumed that the conventional minibatch-based SGD
algorithm is used for sequence-discriminative training. Although careful engineer-
ing can speed up the training (e.g., as in [15]), the possible speed improvement is
limited by the nature of the algorithm. In this section, we introduce noise contrastive
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estimation (NCE), an advanced training algorithm that can potentially further
improve the training speed.

NCEwas first proposed by Gutmann and Hyvarinen [3, 4] as a more reliable algo-
rithm to estimate unnormalized statistical models. It was later successfully applied
to training neural network language models (LMs) [10].

8.3.1 Casting Probability Density Estimation Problem
as a Classifier Design Problem

Assume pd is an unknown probability density function (pdf) and X = (x1, . . . , xTd )

of a random vector x ∈ R
N is sampled from pb, where Td is the sample size. To

estimate pb we assume it belongs to a parameterized family of functions pm(.;ϑϑ,
where ϑ is a vector of parameters. In other words, pd(.) = pm(.;ϑ∗) for some
parameter ϑ∗. The parametric density estimation problem can thus be converted into
the problem of finding ϑ∗ from the observed sample X.

Typically, we require, for any ϑ,

∫
pm(u;ϑ)du = 1, (8.18)

pm(u;ϑ) ≥ 0 ∀u (8.19)

so that pm(.;ϑ) is a valid pdf. In this case, we say the model is normalized and
the maximum likelihood principle can then be used to estimate ϑ. However, in many
cases, we only require that for certainϑ (e.g., the true parameterϑ∗) the normalization
constraint is satisfied. In this case, we say that the model is unnormalized. Since we
assume pb belongs to pm(.;ϑ)ϑ, we know that the unnormalized model integrates to
one at least for parameter ϑ∗.

Following [4], we denote by p0m(.;α) the unnormalized model parameterized
by α. The unnormalized model p0m(.;α) can be converted into a normalized one as
p0m(.;α)/Z (α), where

Z (α) =
∫

p0m(u;α)du (8.20)

is the partition function and often is expensive to compute when u is of high dimen-
sion. Since for each α there is a corresponding Z (α), we may define a normalizing
parameter c = −lnZ (α) and represent the likelihood of the normalized model as

ln pm(.;ϑ) = ln p0m(.;α) + c (8.21)

with parameter ϑ = (α, c). Note that at ϑ∗ we have ϑ∗ = (α∗, 0).
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The basic idea of NCE is to convert the density estimation problem to a two-class
classification problem by describing properties of the observed sample X relative to
the properties of some reference i.i.d. sampleY = (y1, . . ., yTn) of a random variable
y ∈ R

N sampled from pdf pn , which we can control, where Tn is the sample size. In
[4], Gutmann and Hyvarinen proposed to use logistic regression, a popular two-class
classifier, to provide the relative description on the form of the ratio pd/pn .

Let us construct a unified dataset U = X ∪ Y = (u1, . . . , uTd+Tn ) and assign to
each data point ut a binary class label

Ct =
{
1 if ut ∈ X
0 if ut ∈ Y

(8.22)

Note that the prior probabilities are

P(C = 1) = Td

Td + Tn
, (8.23)

P(C = 0) = Tn

Td + Tn
(8.24)

and the class-conditional probability densities are

p(u|C = 1) = pm(u;ϑ), (8.25)

p(u|C = 0) = pn(u) (8.26)

The posterior probabilities for the classes are therefore

h (u;ϑ) � P(C = 1|u;ϑ) = pm(u;ϑ)

pm(u;ϑ) + νpn(u)
, (8.27)

P(C = 0|u;ϑ) = 1 − h (u;ϑ) = νpn(u)

pm(u;ϑ) + νpn(u)
, (8.28)

where

ν � P(C = 0)

P(C = 1)
= Tn/Td . (8.29)

If we further define G(.;ϑ) as the log-ratio between pm(.;ϑ) and pn ,

G(u;ϑ) � ln pm(u;ϑ) − ln pn(u), (8.30)

h (u;ϑ) can be written as

h(u;ϑ) = 1

1 + ν
pn(u)

pm (u;ϑ)

= σν(G(u;ϑ)), (8.31)
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where

σν(u) = 1

1 + ν exp (−u)
(8.32)

is the logistic function parameterized by ν. If we assume the class labels Ct are
independent and follow a Bernoulli distribution the conditional log-likelihood (or
negative cross entropy) is


 (ϑ) =
Td+Tn∑
t=1

Ct ln P(Ct = 1|ut;ϑ) + (1 − Ct)P(Ct = 0|ut;ϑ)

=
Td∑

t=1

ln [h(xt ;ϑ)] +
Tn∑

t=1

ln
[
1 − h(yt ;ϑ)

]
(8.33)

By optimizing 
 (ϑ) with respect to ϑ we get an estimate of pd . In other words,
the density estimation, which is an unsupervised learning problem, is now converted
into a two-class supervised classifier design problem as pointed out firstly by Hastie
et al. in [5].

8.3.2 Extension to Unnormalized Models

The above argument was further extended to the unnormalized model by Gutmann
and Hyvarinen in [4]. They defined the criterion

JT (ϑ) = 1

Td

⎧⎨
⎩

Td∑
t=1

ln [h(xt ;ϑ)] +
Tn∑

t=1

ln
[
1 − h(yt ;ϑ)

]
⎫⎬
⎭

= 1

Td

Td∑
t=1

ln [h(xt ;ϑ)] + ν
1

Tn

Tn∑
t=1

ln
[
1 − h(yt ;ϑ)

]
(8.34)

to find the best ϑ to estimate pd . It is obvious that improving JT (ϑ) means the two-
class classifier can more accurately distinguish between the observed data and the
reference data.

As Td increases and by fixing ν, Tn = νTd also increases, JT (ϑ) converges in
probability to

J (ϑ) = E {ln [h(xt ;ϑ)]} + νE
{
ln

[
1 − h(yt ;ϑ)

]}
. (8.35)
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It is proven [4], by defining fm (.) = ln pm(.;ϑ) and rewriting the criterion as a
function of fm , that

• J (ϑ) attains a maximum when pm(.;ϑ) = pd . This is the only extrema if the
noise density pn is chosen such that it is nonzero whenever pd is nonzero. More
importantly, maximization is performed without any normalization constraint for
pm(.;ϑ).

• ϑT , the value of ϑ which (globally) maximizes JT (ϑ), converges to ϑ∗ if the fol-
lowing three conditions are all satisfied: a) pn is nonzero whenever pd is nonzero;
b) JT uniformly convergent in probability to J ; and c) for large sample sizes the
objective function JT becomes peaked enough around the true value ϑ∗.

• √
Td

(
ϑ̂T − ϑ∗) is asymptotically normalwithmeanzero and abounded covariance

matrix �.
• For ν → ∞, � is independent of the choice of pn .

Based on these properties, it is suggested that we should choose noise for which an
analytical expression for lnpn is available, can be sampled easily, and in some aspect
similar to the data. It is also suggested that the noise sample size should be as large
as computationally possible. Example noise distributions are Gaussian and uniform
distributions.

8.3.3 Apply NCE in DNN Training

In the acoustic model training using the cross-entropy criterion, we estimate the
distribution P (s|o;ϑ) of the senone s given the observation o. For each observation
o with label s we generate ν noise labels y1, . . . , yν and optimize

JT (o,ϑ) = ln [h(s|o;ϑ)] +
ν∑

t=1

ln [1 − h(yt |o;ϑ)] . (8.36)

Since

∂

∂ϑ
ln [h(s|o;ϑ)] = h(s|o;ϑ) [1 − h(s|o;ϑ)]

h(s|o;ϑ)

∂

∂ϑ
ln Pm (s|o;ϑ)

= [1 − h(s|o;ϑ)]
∂

∂ϑ
ln Pm (s|o;ϑ)

= ν Pn (s|o)

Pm (s|o;ϑ) + ν Pn (s|o)

∂

∂ϑ
ln Pm (s|o;ϑ) (8.37)

and

∂

∂ϑ
ln [1 − h(yt |o;ϑ)] = −h(yt |o;ϑ) [1 − h(yt |o;ϑ)]

1 − h(yt |o;ϑ)

∂

∂ϑ
ln Pm (yt |o;ϑ)
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= −h(yt |o;ϑ)
∂

∂ϑ
ln Pm (yt |o;ϑ)

= − Pm (yt |o;ϑ)

Pm (yt |o;ϑ) + ν Pn (yt |o)

∂

∂ϑ
ln Pm (yt |o;ϑ) (8.38)

we get

∂

∂ϑ
JT (o, ϑ) = ν Pn (s|o)

Pm (s|o;ϑ) + ν Pn (s|o)

∂

∂ϑ
ln Pm (s|o;ϑ)

−
ν∑

t=1

[
Pm (yt |o;ϑ)

Pm (yt |o;ϑ) + ν Pn (yt |o)

∂

∂ϑ
ln Pm (yt |o;ϑ)

]
.(8.39)

Note that the weights Pm (yt |o;ϑ)
Pm (yt |o;ϑ)+ν Pn(yt |o)

are always between 0 and 1 and so the NCE
learning is very stable. In addition, since Pm (s|o;ϑ) is an unnormalized model, the
gradient ∂

∂ϑ
ln Pm (.|o;ϑ) can be computed efficiently. However, in the unnormalized

model there is a normalization factor c for each observation o which can become
a problem when the AM training set is very large. Fortunately, experiments have
shown that there is no or little performance degradation even if the same c is used
for all observations or even when c is always set to 0 [4, 10]. Since it typically does
not increase the computation a lot and often helps to boost the estimation accuracy
using a shared c is recommended.

Since the conditional probability distributions for different observations are esti-
mated with the same DNN, we cannot learn these distributions independently.
Instead, we define a global NCE objective

J G
T (ϑ) =

Td∑
t=1

JT
(
ot,ϑ

)
. (8.40)

The above derivation can be easily extended to sequence-discriminative train-
ing. The only difference is that in the sequence-discriminative training there are
significantly more classes than that in the frame-level training since each label
sequence is considered as a different class. More specifically, for the mth utterance
the distribution we need to estimate is

log P
(
wm |om; θ

) = log p
(
om |sm; θ

)κ
P

(
wm) + cm . (8.41)

Recall that here om = om
1 , . . . , om

t , . . . , om
Tm

and wm = wm
1 , . . . , wm

t , . . . , wm
Nm

are
the observation sequence and the correct word transcription of the mth utterance,
respectively, sm = sm

1 , . . . , sm
t , . . . , sm

Tm
is the sequence of states corresponding to

wm , κ is the acoustic scaling factor, Tm is the total number of frames in utterance m,
and Nm is the total number of words in the transcription of the same utterance. In the
sequence-discriminative training, we can use uniform distributions over all possible
state sequences or over sequences in the lattice as the noise distribution.



References 153

References

1. Bahl, L., Brown, P., De Souza, P., Mercer, R.: Maximum mutual information estimation of
hidden markov model parameters for speech recognition. In: Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 11, pp. 49–52 (1986)

2. Goel, V., Byrne, W.J.: Minimum Bayes-risk automatic speech recognition. Comput. Speech
Lang. 14(2), 115–135 (2000)

3. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation principle for
unnormalized statistical models. In: International Conference on Artificial Intelligence and
Statistics, pp. 297–304 (2010)

4. Gutmann, M.U., Hyvärinen, A.: Noise-contrastive estimation of unnormalized statistical mod-
els, with applications to natural image statistics. J. Mach. Learn. Res. 13, 307–361 (2012)

5. Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., Tibshirani, R.: The Elements
of Statistical Learning, vol. 2. Springer, Heidelberg (2009)

6. Hennebert, J., Ris, C., Bourlard, H., Renals, S., Morgan, N.: Estimation of Global Posteriors
and Forward-Backward Training of Hybrid HMM/ANN Systems (1997)

7. Kapadia, S., Valtchev, V., Young, S.: MMI training for continuous phoneme recognition on the
TIMIT database. In: Proceedings of the International Conference on Acoustics, Speech and
Signal Processing (ICASSP), vol. 2, pp. 491–494 (1993)

8. Kingsbury, B.: Lattice-based optimization of sequence classification criteria for neural-network
acoustic modeling. In: Proceedings of the International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 3761–3764 (2009)

9. Kingsbury, B., Sainath, T.N., Soltau, H.: Scalable minimum bayes risk training of deep neural
network acoustic models using distributed hessian-free optimization. In: Proceedings of the
Annual Conference of International Speech Communication Association (INTERSPEECH)
(2012)

10. Mnih, A., Teh, Y.W.: A fast and simple algorithm for training neural probabilistic language
models. arXiv preprint arXiv:1206.6426 (2012)

11. Mohamed, A.-R., Yu, D., Deng, L.: Investigation of full-sequence training of deep belief
networks for speech recognition. In: Proceedings of the Annual Conference of International
Speech Communication Association (INTERSPEECH), pp. 2846–2849 (2010)

12. Povey, D.: Discriminative Training for Large Vocabulary Speech Recognition. Ph.D. thesis,
Cambridge University Engineering Department (2003)

13. Povey,D.,Kanevsky,D.,Kingsbury,B.,Ramabhadran,B., Saon,G.,Visweswariah,K.:Boosted
MMI for model and feature-space discriminative training. In: Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4057–4060 (2008)

14. Povey, D.,Woodland, P.C.:Minimumphone error and I-smoothing for improved discriminative
training. In: Proceedings of the International Conference on Acoustics, Speech and Signal
Processing (ICASSP), vol. 1, pp. I–105 (2002)

15. Su, H., Li, G., Yu, D., Seide, F.: Error back propagation for sequence training of context-
dependent deep networks for conversational speech transcription. In: Proceedings of the Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013)
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Part IV
Representation Learning
in Deep Neural Networks



Chapter 9
Feature Representation Learning in Deep
Neural Networks

Abstract In this chapter, we show that deep neural networks jointly learn the feature
representation and the classifier. Through many layers of nonlinear processing, DNNs
transform the raw input feature to a more invariant and discriminative representation
that can be better classified by the log-linear model. In addition, DNNs learn a
hierarchy of features. The lower-level features typically catch local patterns. These
patterns are very sensitive to changes in the raw feature. The higher-level features,
however, are built upon the low-level features and are more abstract and invariant to
the variations in the raw feature. We demonstrate that the learned high-level features
are robust to speaker and environment variations.

9.1 Joint Learning of Feature Representation and Classifier

Why do DNNs perform so much better than the conventional shallow models such as
Gaussian mixture models (GMMs) and support vector machines (SVMs) in speech
recognition? We believe it mainly attributes to the DNNs ability to learn complicated
feature representations and classifiers jointly.

In the conventional shallow models, feature engineering is the key to the success
of the system. Practitioner’s main job is to construct features that perform well for
a specific learning algorithm on a specific task. The improvement of the system’s
performance often comes from finding a better feature by someone who has great
domain knowledge. Typical examples include the scale-invariant feature transform
(SIFT) [17] widely used in image classification and the mel-frequency cepstrum
coefficients (MFCC) [2] used in the speech recognition tasks.

Deep models such as DNNs, however, do not require hand-crafted high-level
features.1 Instead, they automatically learn the feature representations and classifiers
jointly. Figure 9.1 depicts the general framework of a typical deep model, in which
both the learnable representation and the learnable classifier are part of the model.

1 Good raw features still help though since the existing DNN learning algorithms may generate
an underperformed system even if a linear transformation such as discrete cosine transformation
(DCT) is applied to the log filter-bank features.

© Springer-Verlag London 2015
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Fig. 9.1 Deep model jointly learns feature representation and classifier
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Fig. 9.2 DNN: A joint feature representation and classifier learning view

In the DNN, the combination of all hidden layers can be considered as a feature
learning module as shown in Fig. 9.2. Although each hidden layer typically only
employs simple nonlinear transformation, the composition of these simple nonlin-
ear transformations results in very complicated nonlinear transformation. The last
layer, which is the softmax layer, is essentially a simple log-linear classifier or some-
times referred as maximum entropy (MaxEnt) [25] model. Thus, in the DNN, the
estimation of the posterior probability p(y = s|o) can be considered as a two-step
nonstochastic process: In the first step, the observation vector o is transformed into a
feature vector vL−1 through L −1 layers of nonlinear transforms. In the second step,
the posterior probability p(y = s|o) is estimated using the log-linear model given
the transformed feature vL−1. If we consider the first L − 1 layers fixed, learning the
parameters in the softmax layer is equivalent to training a MaxEnt model on feature
vL−1. In the conventional MaxEnt model, features are manually designed, e.g., in
most natural language processing tasks [25] and in speech recognition tasks [6, 31].
Manual feature construction works fine for tasks that people can easily inspect and
know what feature to use but not for tasks whose raw features are highly variable.
In DNNs, however, the features are defined by the first L − 1 layers and are jointly
learned with the MaxEnt model from the data. This not only eliminates the tedious
and erroneous process of manual feature construction but also has the potential of
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extracting invariant and discriminative features, which are impossible to construct
manually, through many layers of nonlinear transforms.

9.2 Feature Hierarchy

DNNs not only learn feature representations that are suitable for the classifier but also
learn a feature hierarchy. Since each hidden layer is a nonlinear transformation of the
input feature, it can be considered as a new representation of the raw input feature.
The hidden layers that are closer to the input layer represent low-level features. Those
that are closer to the softmax layer represent higher-level features. The lower-level
features typically catch local patterns. These patterns are very sensitive to changes
in the input feature. The higher-level features, however, are built upon the low-level
features and are more abstract and invariant to the input feature variations. Figure 9.3,
extracted from [34], depicts the feature hierarchy learned from imageNet dataset [9].
As we can see that the higher-level features are more abstract and invariant.

This property can also be observed in Fig. 9.4 in which the percentage of saturated
neurons, defined as neurons whose activation value is either >0.99 or <0.01, at each
layer are shown. The lower layers typically have smaller percentage of saturated neu-
rons while the higher layers, that are close to the softmax layer, have large percent-
age of saturated neurons. Note that majority of the saturated neurons are deactivated
(whose activation value is <0.01), which indicates that the associated features are
sparse. This is because the training label, which is 1 for the correct class and 0 for
all other classes, is parse.

In this hierarchy of features, higher layer features are more invariant and
discriminative. This is because many layers of simple nonlinear processing can gen-
erate a complicated nonlinear transform. To show that this nonlinear transform is
robust to small variations in the input features, let us assume the output of layer l,
or equivalently the input to layer l + 1 is changed from v� to v� + δ�, where δ� is

Low-Level Feature Mid-Level Feature High-Level Feature

Fig. 9.3 Feature hierarchy learned by a network with many layers on ImageNet. (Figure extracted
from Zeiler and Fergusfrom [34], permitted to use by Zeiler.)
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Fig. 9.4 Percentage of saturated neurons at each layer. (A similar figure has also been shown in
Yu et al. [33])

a small change. This change will cause the output of layer l + 1, or equivalently the
input to layer � + 2 to change by

δ�+1 = σ(z�+1(v� + δ�)) − σ(z�+1(v�))

≈ diag
(
σ′(z�+1(v�))

)
(W�+1)T δ�. (9.1)

where
z�+1(v�) = W�+1v� + b�+1 (9.2)

is the excitation, and σ(z) is the sigmoid activation function. The norm of the change
δ�+1 is

‖δ�+1‖ ≈ ‖diag
(
σ′(z�+1(v�))

)
(W�+1)T δ�‖

≤ ‖diag
(
σ′(z�+1(v�))

)
(W�+1)T ‖‖δ�‖

= ‖diag(v�+1 • (1 − v�+1))(W�+1)T ‖‖δ�‖ (9.3)

where • refers to an element-wise product.
In the DNN, the magnitude of the majority of the weights is typically very small

if the size of the hidden layer is large as shown in Fig. 9.5. For example, in a 6 × 2 k
DNN trained using 30 h of SWB data, the magnitude of 98 % of the weights in all
layers except the input layer is less than 0.5.

While each element in v�+1 • (1 − v�+1) is less than or equal to 0.25, the actual
value is typically much smaller. This is because a large percentage of hidden neurons
are inactive, as shown in Fig. 9.4. As a result, the average norm ‖diag(v�+1 • (1 −
v�+1))(W�+1)T ‖2 in Eq. 9.3 across a 6 h SWB development set is smaller than one
in all layers, as indicated in Fig. 9.6. Since all hidden layer values are bounded in
the same range of (0, 1), this indicates that when there is a small perturbation on
the input, the perturbation shrinks at each higher layer. In other words, features
generated by higher layers are more invariant to variations than those represented
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Fig. 9.5 Weight magnitude distribution in a typical DNN

Fig. 9.6 Average and maximum ‖diag(v�+1 • (1 − v�+1))(W�+1)T ‖2 across layers on a 6 × 2 k
DNN. (A similar figure has also been shown in Yu et al. [33])

by lower layers. Note that the maximum norm over the same development set is
larger than one, as shown in Fig. 9.6. This is necessary since the differences need to
be enlarged around the class boundaries to have discrimination ability. These large
norm cases also cause noncontinual points on the objective function, as indicated by
the fact that you can almost always find inputs from which a small deviation would
change the label predicted by the DNN [29].2

In general, features are processed in stages in the hierarchical deep model as
shown in Fig. 9.7. Each stage can be consisted of several optional steps: nor-
malization, filter-bank processing, nonlinear processing, and pooling [10]. Typical

2 This behavior can be alleviated by adding small random noises to each training sample dynamically
during the training time.
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Fig. 9.7 A general framework of feature processing. In the figure, three stages are shown, each of
the stage involves four optional steps

normalization techniques include average removal, local contrast normalization, and
variance normalization, some of which have been discussed in Sect. 4.3.1. The pur-
pose of the filter-bank processing is to project the feature to a higher dimensional
space in which classification can be more easily done. This can be achieved by
dimension expansion or feature projection. The nonlinear processing step is critical
in the deep model since the combination of linear transformations is just another lin-
ear transformation. Often used nonlinear functions include sparsification, saturation,
lateral inhibition, tanh, sigmoid, and winner-takes-all. The purpose of the pooling
step, which involves aggregation and clustering, is to extract invariant feature and
reduce the dimension.

9.3 Flexibility in Using Arbitrary Input Features

Note that GMMs typically require each dimension in the input feature to be
statistically independent so that a diagonal covariance matrix may be used to reduce
the number of parameters in the model. DNNs, however, are discriminative models
and do not have similar constraints.

In the speech recognition applications, MFCC and perceptual linear predictive
(PLP) features are two most often used raw features. However, both these two types of
features are derived from the Mel-scaled log filter-bank features (MS-LFB). Although
these features are more invariant than the Mel-scaled log filter-bank features, some
information useful for classification may be lost during the manual feature trans-
formation process. A natural thought is to use the MS-LFB features directly as the
input to the DNNs [18]. Table 9.1, extracted from [16], compares the discrimina-
tively trained CD-GMM-HMM baseline with the CD-DNN-HMMs using different
raw input features on a voice search task. The 13-dimensional MFCC feature is
extracted from the 24-dimensional Mel-scale log filter-bank feature with a trun-
cated discrete cosine transform (DCT). All the input features are mean normalized
and with dynamic features. The MFCC feature is with up to third-order deriva-
tives, while the log filter-bank feature have up to the second-order derivatives. The
HLDA [13] transform is only applied to the MFCC feature for the CD-GMM-HMM
system. From this table, we can observe that switching from the MFCC feature
to the 24 Mel-scale log filter-bank feature leads to 4.7 % relative word error rate

http://dx.doi.org/10.1007/978-1-4471-5779-3_4
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Table 9.1 Comparison of different raw input features for DNN

Combination of model and features WER (rel. WERR)

CD-GMM-HMM (MFCC, fMPE+BMMI) 34.66 % (baseline)

CD-DNN-HMM (MFCC) 31.63 % (−8.7 %)

CD-DNN-HMM (24 MS-LFB) 30.11 % (−13.1 %)

CD-DNN-HMM (29 MS-LFB) 30.11 % (−13.1 %)

CD-DNN-HMM (40 MS-LFB) 29.86 % (−13.8 %)

All the input features are mean normalized and with dynamic features. Relative word error rate
(WER) reduction in parentheses. (Summarized from Li et al. [16])

(WER) reduction. Increasing the number of filter-banks from 24 to 40 only pro-
vides less than 1 % relative WER reduction. Overall, CD-DNN-HMM outperforms
CD-GMM-HMM trained using fMPE+BMMI by a relative WER reduction of
13.8 %. Note that this is achieved with much simpler training procedure than that is
used to build the CD-GMM-HMM baseline. All the DNN models shown in this table
were trained using the frame-level cross-entropy criterion. Further improvement can
be obtained by using sequence-discriminative training discussed in Chap. 8.

Even the filter-banks can be automatically learned by the DNNs as reported in [26],
in which FFT spectrum is used as the input to the DNNs. To suppress the dynamic
range of the filter-bank output, the log function is used as the activation function in
the filter-bank layer. In addition, the normalization step depicted in Fig. 9.7 is applied
to the activations of the filter-bank layer before they are sent to the next layer. It is
reported in [26] that by learning the filter-bank parameters directly 5 % relative WER
reduction can be achieved over the baseline DNNs that use the manually designed
Mel-scale filter-banks.

9.4 Robustness of Features

A key property of a good feature is its robustness to the variations. There are two main
types of variations in speech signals: speaker variation and environment variation. In
the conventional GMM-HMM systems, both types of variations need to be handled
explicitly.

9.4.1 Robust to Speaker Variations

To deal with speaker variability, vocal tract length normalization (VTLN) [1] and
feature-space maximum likelihood linear regression (fMLLR) [5] are critical in the
GMM-HMM systems.

http://dx.doi.org/10.1007/978-1-4471-5779-3_8
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Table 9.2 Comparison of feature-transform-based speaker-adaptation techniques for GMM-
HMMs, a shallow, and a deep NN

Adaptation technique CD-GMM-HMM
(40-mixture)

CD-MLP-HMM
(1 × 2,048)

CD-DNN-HMM
(7 × 2,048)

Speaker independent 23.6 % 24.2 % 17.1 %

+ VTLN 21.5 % (−9 %) 22.5 % (−7 %) 16.8 % (−2 %)

+ fMLLR/fDLR×4 20.4 % (−5 %) 21.5 % (−4 %) 16.4 % (−2 %)

Word-error rates (WER) for Hub5’00-SWB (relative change in parentheses). (Summarized from
Seide et al. [27])

VTLN warps the frequency axis of the filter-bank analysis to account for the
fact that the locations of vocal-tract resonances vary roughly monotonically with
the vocal tract length of the speaker. This is done in both training and testing with
20 quantized warping factors from 0.8 to 1.18. During the training, the optimal
warping factor can be found using the expectation–maximization (EM) algorithm
by repeatedly selecting the best factor given the current model and then updating
the model using the selected factor. During the testing, the system can pick the best
factor by running recognition for all factors and using the highest cumulative log
probability.

On the other hand, fMLLR applies an affine transform to the feature vector so
that the transformed feature better matches the model. It is typically applied to the
testing utterance by first generating recognition results using the raw feature and
then re-recognizing the speech with the transformed feature. This process can be
iterated for several times. For GMM-HMMs, fMLLR transforms are estimated to
maximize the likelihood of the adaptation data given the model. For DNNs, they are
optimized to maximize cross entropy (with backpropagation), which is a discrimina-
tive criterion. This procedure is thus referred as feature-space discriminative linear
regression (fDLR) [27]. The transformation may be applied to each input vector
(which is typically a concatenation of multiple frames of features) in the DNN or
applied to individual frames, prior to concatenation.

Table 9.2, extracted from [27], compares the effectiveness of VTLN and
fMLLR/fDLR on GMMs, shallow multilayer perceptrons (MLPs), and DNNs. It
can be observed that both VTLN and fMLLR are important for GMMs to reduce
speaker variability. In fact, they provide 9 and 5 % relative error rate reduction,
respectively. These techniques are also important for shallow MLPs with 7 and 4 %
relative WER reduction. However, these techniques are less important on the DNN
systems and provide only 2 % relative error reduction over the speaker-independent
baseline DNN system. This observation indicates that DNNs are more robust to the
speaker variations than GMMs and shallow MLPs.
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9.4.2 Robust to Environment Variations

Similarly, GMM-based acoustic models are highly sensitive to environmental
mismatch. To deal with the issue several techniques, such as vector Taylor series
(VTS) [12, 14, 15, 19] adaption and maximum likelihood linear regression
(MLLR) [4], that normalize the input features or adapt the model parameters have
been developed. In contrast, the analysis in the previous sections suggests that DNNs
have the ability to generate internal representations that are robust to environmental
variability seen in the training data.

In methods such as VTS adaptation, an estimated noise model is used to adapt the
Gaussian parameters of the recognizer based on a physical model that defines how
noise corrupts clean speech. The relationship between the clean speech x, corrupted
(or noisy) speech y, and noise n in the log spectral domain can be approximated as

y = x + log(1 + exp(n − x)). (9.4)

In GMMs, this nonlinear relationship is often approximated with the first-order
VTS. DNNs, however, with many layers of nonlinear transformation, can directly
model arbitrary nonlinear relationships, including that described by Eq. 9.4. Since
we are interested in the nonlinear mapping from the noisy speech y, and noise n to
the clean speech x, we may augment each observation input (noisy speech) to the
network with an estimate of the noise n̂t present in the signal, i.e.,

v0
t = [yt−τ , . . . , yt−1, yt , yt+1, . . . , yt+τ , n̂t ], (9.5)

where a window of 2τ + 1 frames of noisy speech and a frame of noise estimation
is used as the input to the network. This is done in both training and decoding and
thus is analogous to noise adaptive training (NAT) [11] without an explicit mismatch
function. Since the DNN is being given noise estimation in order to automatically
learn the mapping from the noisy speech and noise to the senone labels, implicitly
through a clean speech estimation, this technique is referred as noise-aware training
(NaT) [28, 33].

The robustness of the DNNs on environment distortions can be clearly observed in
the experiments conducted on the Aurora 4 corpus [20], a 5,000-word vocabulary task
based on the Wall Street Journal (WSJ0) corpus. The models were trained with the
16 kHz multi-condition training set consisting of 7,137 utterances from 83 speakers.
One half of the utterances was recorded by a high-quality close-talking microphone
and the other half was recorded using one of 18 different secondary microphones.
Both halves include a combination of clean speech and speech corrupted by one of
six different types of noise (street traffic, train station, car, babble, restaurant, airport)
at a range of signal-to-noise ratios (SNR) between 10–20 dB.

The evaluation was conducted on the test set consisting of 330 utterances from
8 speakers. This test set was recorded by the primary microphone and a number of
secondary microphones. These two sets were then each corrupted by the same six
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Table 9.3 A comparison of several GMM systems in the literature to a DNN system on the Aurora
4 task

Systems Distortion AVG (%)

None Noise (%) Channel (%) Noise+
(clean) (%) channel (%)

GMM baseline 14.3 17.9 20.2 31.3 23.6

MPE + NAT + VTS 7.2 12.8 11.5 19.7 15.3

NAT + Derivative kernels 7.4 12.6 10.7 19.0 14.8

NAT + Joint MLLR/VTS 5.6 11.0 8.8 17.8 13.4

DNN (7× 2,048) 5.6 8.8 8.9 20.0 13.4

DNN + NaT + dropout 5.4 8.3 7.6 18.5 12.4

Summarized from [28, 33]

noises used in the training set at SNRs between 5 and 15 dB, creating a total of 14
test sets. These 14 test sets can then be grouped into 4 subsets, based on the type
of distortion: none (clean speech), additive noise only, channel distortion only, and
noise + channel. Notice that the types of noise are common across training and test
sets but the SNRs of the data are not.

The DNN was trained using 24-dimensional log mel-filter-bank features with
utterance-level mean normalization. The first- and second-order derivative features
were appended to the static feature vectors. The input layer was formed from a
context window of 11 frames creating an input layer of 792 input neurons. The DNN
had 7 hidden layers each with 2,048 neurons and the softmax output layer had 3,206
neurons, corresponding to the senones of the baseline HMM system. The network
was initialized using layer-by-layer generative pretraining and then discriminatively
trained using backpropagation. To reduce the overfitting, dropout [7] discussed in
Sect. 4.3.4 was used in one of the DNN setups.

In Table 9.3, summarized from [28, 33], the performance obtained by the DNN
acoustic model is compared to that obtained by several GMM systems. The first
system is a baseline GMM-HMM system, while the remaining systems are repre-
sentative of the state-of-the-art GMM systems in acoustic modeling and noise and
speaker adaptation. All used the same training set.

The “MPE+NAT+VTS” system combines minimum phone error (MPE)
discriminative training [23] and noise adaptive training (NAT) using VTS adaptation
to compensate for noise and channel mismatch [3]. The “NAT+Derivative Kernels”
system uses a multi-pass hybrid generative/discriminative classifier [24]. It first uses
an adaptively trained HMM with VTS adaptation to generate features based on state
likelihoods and their derivatives. These features are then input to a discriminative
log-linear model to obtain the final hypothesis. The “NAT+Joint MLLR/VTS” sys-
tem uses an HMM trained with NAT and combines VTS adaptation for environment
compensation and MLLR for speaker adaptation [30] . The last two rows of the table
show the performance of the two DNN-HMM systems. The “DNN (7 × 2 K)” sys-
tem is simply a direct application of the CD-DNN-HMM with 7 hidden layers each

http://dx.doi.org/10.1007/978-1-4471-5779-3_4
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with 2 K neurons. Nevertheless, it outperforms all but the “NAT+Joint MLLR/VTS”
system. Finally, the “DNN+NaT+dropout” system that uses the noise-aware train-
ing and dropout has the best performance. In addition, all the DNN-HMM results
were obtained in the first pass, while the other three systems required two or more
recognition passes for noise, channel, or speaker adaptation. These results clearly
demonstrate the inherent robustness of the DNN to unwanted variability from noise
and channel mismatch.

9.5 Robustness Across All Conditions

The superior robustness results reported in Sect. 9.4 seem to suggest that DNNs
provide significantly higher error rate reduction over GMM systems for noisier
speech than for cleaner speech. This is, however, untrue. In fact, these results only
indicate that the DNN systems are more robust than GMM systems to speaker and
environmental distortions. The perturbation shrinking property in the higher layers
as we discussed in Sect. 9.2 applies equally to all conditions. In this section, we show,
using results from [8], that DNNs provide similar gains over GMM systems across
different noise levels and speaking rates.

In [8], Huang et al. conducted a series of studies comparing GMMs and DNNs on
the mobile voice search (VS) and short message dictation (SMD) datasets collected
through the real-world applications that are used by millions of users with distinct
speaking styles in diverse acoustic environments. These datasets were chosen because
they cover almost all key LVCSR acoustic model challenges, each with enough data
to ensure the statistical significance. In the study, Huang et al. trained a pair of
GMM and DNN models using 400 h VS/SMD data. The GMM system, which used
the 39-dimensional MFCC feature with up to the third-order derivatives, is a state-
of-the-art model trained with the feature-space minimum phone error rate (fMPE)
[22] and boosted MMI (bMMI) [21] criteria. The DNN system, which used the
29-dimensional log filter-bank (LFB) feature (and up to the second-order derivatives)
with a context window of 11 frames, was trained using the cross-entropy (CE) criteria.
The two models shared the same training data and decision tree. The same maximum
likelihood estimation (MLE) GMM seed model was used for the lattice generation
in the GMM and the senone state alignment in the DNN. The analytic study was
conducted on a 100 h VS/SMD test data randomly sampled from the datasets and
roughly follow the same distribution as the training data.

9.5.1 Robustness Across Noise Levels

Figures 9.8 and 9.9, provided in [8], compare the error pattern of the GMM-HMM and
CD-DNN-HMM models under different signal-to-noise ratios (SNRs) for the VS and
SMD datasets respectively. As we can observe from these tables, the CD-DNN-HMM
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Fig. 9.8 Performance comparison of GMM-HMM and CD-DNN-HMM at different SNR levels
for the VS task. The solid lines are the regression curves. (Figure from Huang et al. [8], permitted
to use by ISCA.)
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Fig. 9.9 Performance comparison of GMM-HMM and CD-DNN-HMM at different SNR levels
for the SMD task. The solid lines are the regression curves. (Figure from Huang et al. [8], permitted
to use by ISCA.)

significantly outperforms the GMM-HMM at all SNR levels, including both the
clean and very noisy speech. But more interestingly, we can observe that the
CD-DNN-HMM yields almost the uniform performance gain across different SNR
levels over the GMM-HMM on both the VS and SMD datasets.

We can measure the noise robustness of the DNN in a different way by calculating
the performance degradation per 1 dB SNR drop. For the VS task, each 1 dB SNR
drop introduces about 0.40 % absolute (or 2.2 % relative) WER increment since when
the SNR drops from 40 to 0 dB the WERs increase from 18 to 34 %. For the SMD
task, the same 1 dB SNR drop results in 0.15 % absolute (or 1.3 % relative) WER
increment because within the same SNR range the SMD WERs increase from 12 to
18 %. The quantitative difference of the sensitivity to the noise level between these
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tasks is likely due to the fact that the SMD has much lower LM perplexity. The same
1 dB SNR drop, however, introduces 0.6 % (2.6 % relative) and 0.20 % absolute (or
1.2 % relative) WER increment on the VS and SMD datasets, respectively, when the
GMM system is used.

These results suggest that CD-DNN-HMM is more robust than GMM systems
with less WER increment per 1 dB SNR drop on average and slightly more so at
the low SNR range as indicated by the flatter slope compared to GMM systems.
However, the difference is very small. The speech recognition performance of the
DNN still drops quite a lot as the noise level increases within the normal range of
the mobile speech applications. This indicates that the noise robustness remains an
important research area and techniques such as speech enhancement, noise robust
acoustic features, or other multi-condition learning technologies need to be explored
to bridge the performance gap and further improve the overall performance of the
deep learning-based acoustic model.

9.5.2 Robustness Across Speaking Rates

Speaking rate variation is another well known factor that would affect the speech
intelligibility and thus the speech recognition accuracy. The speaking rate change
can be due to different speakers, speaking modes, and speaking styles. There are
several reasons that speaking rate change may result in speech recognition accuracy
degradation. First, it may change the acoustic score dynamic range since the AM
score of a phone is the sum of all the frames in the same phone segment. Second,
the fixed frame rate, frame length, and context window size may be inadequate to
capture the dynamics in transient speech events for fast or slow speech and therefore
result in suboptimal modeling. Third, variable speaking rates may result in slight
formant shift due to the human vocal instrumentation limitation. Last, extremely fast
speech may cause formant target missing and phone deletion.

Figures 9.10 and 9.11, originally appear in [8], illustrate the WER difference
across different speaking rates, measured as the number of phones per second,3

on the VS and SMD datasets respectively. From these figures, we can notice that
the CD-DNN-HMM system consistently outperforms the GMM-HMM system with
almost uniform WER reduction across all speaking rates. Unlike in the noise robust-
ness case, here we observe a U-shaped pattern on both VS and SMD datasets. On the
VS dataset, the best WER is achieved around 10–12 phones per second. When the
speaking rate deviates, either speeds up or slows down, 30 % from the sweet spot,
30 % relative WER increment is observed. On the SMD dataset, 15 % relative WER
increment can be observed when the speaking rate deviates 30 % from the sweet spot.

3 Huang et al. [8] also tried some of the variations such as the number of vowels per second and
the speaking rate normalized by the average duration of different phonemes. It was reported that no
matter which definition is used the WER pattern is very similar.



170 9 Feature Representation Learning in Deep Neural Networks

0

4

8

12

16

20

24

28

15

25

35

45

55

5 7 9 11 13 15 17

H
is

to
gr

am
 (

%
)

W
E

R
 (

%
)

Speaking Rate (# of Phones per Second)

Data Dist. (VS)
GMM-HMM (VS)
CD-DNN-HMM (VS)

Fig. 9.10 Performance comparison of the GMM-HMM and the CD-DNN-HMM at different speak-
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To compensate for the speaking rate difference, additional modeling techniques need
to be developed.

9.6 Lack of Generalization Over Large Distortions

In Sect. 9.2, we have shown that small perturbations in the input will be gradually
shrunk as we move to the internal representation in the higher layers. This property
leads to robustness of the DNN systems to the speaker and environment variations as
shown in Sect. 9.4. In Sect. 9.5, we showed that this property applies across different
SNR levels and speaking rates. In this section, we point out that the above result is
only applicable to small perturbations around the training samples. When the test
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Fig. 9.12 Illustration of mixed-bandwidth speech recognition using a DNN. (Figure from Yu et al.
[33], permitted to use by Yu.)

samples deviate significantly from the training samples, DNNs cannot accurately
classify them. In other words, DNNs must see examples of representative variations
in the data during training in order to generalize to similar variations in the test data.
This is no different from other machine learning models.

This behavior can be demonstrated using a mixed-bandwidth ASR study. Typical
speech recognizers are trained on either narrowband speech signals, recorded at
8 kHz, or wideband speech signals, recorded at 16 kHz. It would be advantageous if
a single system could recognize both narrowband and wideband speech, i.e., mixed-
bandwidth ASR. One such system, depicted in Fig. 9.12, was recently proposed on the
CD-DNN-HMM framework [16]. In this mixed-bandwidth ASR system, the input to
the DNN is the 29 mel-scale log filter-bank outputs together with dynamic features
across an 11-frame context window. The DNN has 7 hidden layers, each with 2,048
nodes. The output layer has 1,803 neurons, corresponding to the number of senones
determined by the GMM system.

The 29-dimensional filter-bank has two parts: the first 22 filters span 0–4 kHz
and the last 7 filters span 4–8 kHz, with the center frequency of the first filter in the
higher filter-bank at 4 kHz. When the speech is wideband, all 29 filters have observed
values. However, when the speech is narrowband, the high-frequency information
was not captured so the final 7 filters are set to 0.

Experiments were conducted on a mobile voice search (VS) corpus. This task
consists of internet search queries made by voice on a smartphone [32]. There are
two training sets, VS-1 and VS-2, consisting of 72 and 197 h of wideband audio data,
respectively. These sets were collected during different times of year. The test set,
called VS-T, has 26,757 words in 9,562 utterances. The narrow band training and
test data were obtained by downsampling the wideband data.

Table 9.4, extracted from [16], summarizes the WER on the wideband and
narrowband test sets when the DNN is trained with and without narrowband speech.
From this table, we can observe that if all training data are wideband, the DNN
performs well on the wideband test set (27.5 % WER) but very poorly on the
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Table 9.4 Word error rate (WER) on wideband (16 k) and narrowband (8 k) test sets with and
without narrowband training data

Training data 16 kHz VS-T (%) 8 kHz VS-T (%)

16 kHz VS-1 + 16 kHz VS-2 27.5 53.5

16 kHz VS-1 + 8 kHz VS-2 28.3 29.3

Table from Yu et al. [33] based on results extracted from Li et al. [16]

narrowband test set (53.5 % WER). However, if we convert VS-2 to narrowband
speech and train the same DNN using mixed-bandwidth data (second row), the DNN
performs very well on both wideband and narrowband speech.

To understand the difference between these two scenarios, we can measure the
Euclidean distance

dl(xwb, xnb) =

√√√√√
N �∑
j=1

(
v�

j (xwb) − v�
j (xnb)

)2
(9.6)

between the activation vectors at each layer for the wideband and narrowband input
feature pairs, v�(xwb) and v�(xnb), where the hidden units are shown as a function
of the wideband features, xwb, or the narrowband features, xnb. For the top layer,
whose output is the senone posterior probability, we calculate the KL divergence in
nats between p(s j |xwb) and p(s j |xnb).

dy (xwb, xnb) =
N L∑
j=1

p(s j |xwb) log
p(s j |xwb)

p(s j |xnb)
, (9.7)

Table 9.5 Euclidean distance for the activation vectors at each hidden layer (L1–L7) and the
KL divergence (nats) for the posteriors at the softmax layer between the narrowband (8 kHz) and
wideband (16 kHz) input features, measured using the wideband DNN or the mixed-bandwidth
DNN

Layer Distance Wideband DNN Mixed-band DNN

1 Euclidean 13.28 7.32

2 10.38 5.39

3 8.04 4.49

4 8.53 4.74

5 9.01 5.39

6 8.46 4.75

7 5.27 3.12

Output KL divergence 2.03 0.22

Table extracted from Li et al. [16] and Yu et al. [33]
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where N L is the number of senones, and s j is the senone id. Table 9.5, extracted from
[16], shows the statistics of dl and dy over 40,000 frames randomly sampled from
the test set for the DNN trained using wideband speech only and that trained using
mixed-bandwidth speech.

From Table 9.5, we can observe that the average distances in the data-mixed DNN
are consistently smaller than those in the DNN trained on wideband speech only. This
indicates that by using mixed-bandwidth training data, the DNN learns to consider
the differences in the wideband and narrowband input features as irrelevant varia-
tions. These variations are suppressed after many layers of nonlinear transformation.
The final representation is thus more invariant to this variation and yet still has the
ability to distinguish between different class labels. This behavior is even more obvi-
ous at the output layer since the KL divergence between the paired outputs is only
0.22 nats in the mixed-bandwidth DNN, much smaller than the 2.03 nats observed in
the wideband DNN.
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Chapter 10
Fuse Deep Neural Network and Gaussian
Mixture Model Systems

Abstract In this chapter, we introduce techniques that fuse deep neural networks
(DNNs) and Gaussian mixture models (GMMs). We first describe the Tandem and
bottleneck approach in which DNNs are used as feature extractors. The hidden layers,
which are better representation than the raw input feature, are used as features in the
GMM systems. We then introduce techniques that fuse the recognition results and
frame-level scores of the DNN-HMM hybrid system with that of the GMM-HMM
system.

10.1 Use DNN-Derived Features in GMM-HMM Systems

In Chap. 9, we have shown that in the deep neural network (DNN)-hidden Markov
model (HMM) hybrid systems DNNs jointly learn the nonlinear feature transforma-
tion and the log-linear classifier. More importantly, the feature representation learned
by DNNs is more robust to the speaker and environment variations than the original
feature. A natural idea is to treat the hidden and output layers in DNNs as better
features and use them in the conventional GMM-HMM systems.

10.1.1 GMM-HMM with Tandem and Bottleneck Features

The idea of treating the hidden and output layers as better features was first proposed
for the shallow multilayer perceptron (MLP) under the name of Tandem approach
[1]. The Tandem approach augments the input to a GMM-HMM system with features
derived from the suitably transformed output of one or more neural networks. Since
the size of the output layer is the same as that of the training target, Tandem features
are typically trained to produce distributions over monophone targets to control the
dimension of the augmented feature.

Alternatively, Grezl et al. [2, 3] proposed to use features derived from a bottle-
neck hidden layer, which has smaller size than that of other layers, instead of using
the neural network outputs directly. Since the hidden layer size can be chosen inde-
pendent of the output layer size, this provides flexibility in choosing the training
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targets and the size of the augmented feature. The bottleneck layer creates a con-
striction in the network and forces the information pertinent to classification into a
low-dimensional representation. Note that bottleneck layers are also used in autoen-
coders (described in Chap. 5) in which the neural network is trained to predict the
input features themselves. Because the activations at the bottleneck layer are a low-
dimensional nonlinear function of the input features, an autoencoder can be viewed
as a method of nonlinear dimensionality reduction. However, since bottleneck fea-
tures learned from autoencoders are unaware of the recognition task, these features
are typically not discriminative as that extracted from bottleneck layers in neural
networks that are trained to predict phonemes, phoneme states, or triphone states.

Many recent works [4–6] that exploit neural network features on large vocabulary
speech recognition tasks use variants of these approaches, either augmenting the
input to a GMM-HMM system with features based on the neural network outputs
or some earlier hidden layers. More recently, DNNs are in place of shallow MLPs
to extract more robust features. These DNNs are often trained to classify senones
instead of monophone labels. For this reason, a hidden layer, instead of the output
layer, is often used as the feature to the GMM system.

Figure 10.1 illustrates the typical hidden layers in DNNs from which the features
are extracted. In Fig. 10.1a, a DNN whose hidden layers are of the same size is trained.
The last hidden layer is then used as the feature, which is typically concatenated
with raw features such as MFCC and PLP. However, in this architecture the feature
generated typically has very high dimension. To make it more manageable, we can
reduce the dimension of the concatenated feature with principal component analysis
(PCA). Alternatively, we can directly reduce the size of the last hidden layer and
make it a bottleneck layer as shown in Fig. 10.1b. Since all the hidden layers can
be considered as some nonlinear transformation of the raw feature, we can use an
arbitrary bottleneck layer as the feature sent to GMMs as shown in Fig. 10.1c.

(a)

Label

(b)

Label

(c)

Label

Fig. 10.1 Using DNNs as feature extractors in GMM-HMM systems. The shaded layer is the
feature used by a GMM-HMM system

http://dx.doi.org/10.1007/978-1-4471-5779-3_5
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Since the hidden layer feature is to be modeled using GMMs, we should use exci-
tations (i.e., before the nonlinear activation function is applied) instead of activations,
especially if the sigmoid nonlinearity is used since sigmoid will generate features
that are bounded within [0, 1] and concentrated in the two extreme values 0 and 1.
Further more, even if we use bottleneck layers the dimension of the bottleneck fea-
ture may still be large and somewhat correlated between dimensions. For this reason
it is often still useful to apply PCA or HLDA before it is used in the GMM-HMM
system as shown in Fig. 10.2.

Note that since the Tandem (or bottleneck) features are trained independent of the
GMM-HMM system, it is difficult to know which layer provides the best feature and
whether adding more layers would perform better. For example, Yu and Seltzer [7]
showed (in Table 10.1) that on the voice search dataset [8] (described in Sect. 6.2.1)
a DNN with four hidden layers performs better than DNNs with either three or seven
hidden layers. Table 10.1 also indicates that the generative pretraining (described in
Chap. 5) helps in this case. In the experiment, they used 11-frames of 39-dimensioanl
MFCC features as the input to the DNNs, 39 neurons in the bottleneck layer, and
2048 hidden neurons for nonbottleneck hidden layers. They used a learning rate

Label

Compressed 
Feature

PCA/HLDA

GMM-HMM

BN
Raw 

Feature

DNN GMM

W4

v3

v2

v1

v1= o 

Fig. 10.2 Using Tandem (or bottleneck) features in the GMM-HMM. The DNN is trained to extract
the Tandem or bottleneck feature, which is then combined with the raw feature. The combined feature
is compressed and decorrelated with PCA or HLDA before it’s modeled by the GMM-HMM

Table 10.1 Development set sentence error rate (SER) using bottleneck features when DNNs with
different depths are used. (Summarized from Yu and Seltzer [7])

Hidden layers 3 (%) 5 (%) 7 (%)

Without DBN-pretraining 41.1 34.3 36.1

With DBN-pretraining 34.3 33.4 34.1

http://dx.doi.org/10.1007/978-1-4471-5779-3_6
http://dx.doi.org/10.1007/978-1-4471-5779-3_5
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Table 10.2 Sentence error rate (SER) comparison of bottleneck features trained with different
supervision labels

Labels used for bottleneck feature training Dev SER (%) Test SER (%)

None 39.4 42.1

Monophone states 35.2 37.0

Monophone states converted from senones 34.0 35.7

Senones 33.4 34.8

DBN-pretraining was applied under all conditions. (Summarized from Yu and Seltzer [7])

of 1.5e−5 per sample for all layers during pretraining, and used a learning rate of
3e−4 per sample for the first 6 epochs and a learning rate of 8e−6 per sample for
the remaining 6 epochs during fine-tuning. The DNN training was carried out using
stochastic mini-batch gradient descend with a minibatch size of 256 samples. The
bottleneck features extracted from the DNNs are then used as alone or concatenated
with the original MFCC features to train the GMM-HMMs. In both the bottleneck
(BN) only and “BN+MFCC” configurations, the features were decorrelated using
PCA and converted to 39 dimensions.

Yu and Seltzer also showed that using senone labels often leads to better perfor-
mance than using monophone labels or using no label as shown in Table 10.2. The
big performance gap between the bottleneck features that are learned without using
labels and that with either monophone or senone labels clearly indicates that learning
features with task-dependent information is important.

10.1.2 DNN-HMM Hybrid System Versus GMM-HMM System
with DNN-Derived Features

The main difference between the DNN-HMM hybrid system and the GMM-HMM
system that uses Tandem or bottleneck features is the classifier used. In the Tan-
dem/bottleneck system, GMM is used in place of log-linear model (the softmax
layer in DNNs) used in the DNN-HMM system. GMMs have better modeling power
than the log-linear model when the same features are used. In fact, it is shown by
Heigold et al. [9] that GMMs equal to the log-linear models when both the first and
second order features are used in the log-linear models. Heigold et al.’s results also
suggest that GMMs can be modeled with a single-hidden-layer neural network with a
very wide hidden layer and sparse connections between the hidden and output layers.
On the other hand, since the hidden layers are trained jointly with the log-linear clas-
sifier, they fit better to the log-linear model (i.e., in the DNN-HMM hybrid system)
than the Tandem/bottlenck system. The net effect of these two factors cancels out and
the two types of systems perform almost equally well when averaged over different
tasks. However, the integrated CD-DNN-HMM system is simpler conceptually and
in practice.
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The main benefit of using DNN-derived features in GMM-HMM systems is the
possibility of taking advantage of existing tools already available to train and to adapt
GMM-HMM systems. It also allows DNNs used to derive features being trained with
a subset of the training data and the GMM-HMM system that uses the DNN-derived
features being trained with the full training set.

In [10], Yan et al. conducted a series of experiments to compare the CD-DNN-
HMM system with the GMM-HMM system that uses the DNN-derived features. In
their study they used the excitation of the last hidden layer depicted in Fig. 10.1a as
the DNN-derived features. The DNN-derived features are then compressed with PCA
and concatenated with the raw spectral features. The augmented features are again
compressed with HLDA [11] so that the dimension is appropriate for GMM-HMM
acoustic modeling. The experiments were conducted on the Switchboard (SWB)
dataset described in Sect. 6.2.1. In the GMM-HMM system that uses the DNN-
derived features (referred as DNN-GMM-HMM) an acoustic downscaling factor
of 0.5 (simply multiply the acoustic log-likelihoods by 0.5) is used in decoding
and word lattice-based sequence training. This was found essential to obtain the best
recognition accuracy. The same PLP feature and training and test setups were used in
the experiments so that the results can be compared with other works (e.g., [12–14]).

Table 10.3, summarized from [10, 14], compares the CD-DNN-HMM system
with the DNN-GMM-HMM system on the SWB Hub5’00 evaluation set when 309 h
training set is used. It can be observed that even though the region dependent lin-
ear transformation (RDLT) [15, 16], that is shown to improve the performance
of the DNN-GMM-HMM system (from 17.8 to 16.1 %), is applied to the DNN-
GMM-HMM, The MMI-trained DNN-GMM-HMM system still underperforms the
CD-DNN-HMM trained with the same MMI training criterion (described in
Chap. 8).

Table 10.4 compares CD-DNN-HMM with DNN-GMM-HMM when 2,000 h
training set is used. From this table, we can observe that with RDLT the MMI-trained

Table 10.3 Word error rate (WER) on the SWB Hub5’00 evaluation set when 309 h training set is
used

CD-DNN-HMM DNN-GMM-HMM

CE MMI ML RDLT +MMI

16.4 % 13.7 % 17.8 % 16.1 % 15.3 %

DNN has 7 hidden layers each with 2 K neurons. The output layer has 9.3 K senones. (Summarized
from [10] and [14])

Table 10.4 Word error rate (WER) on the SWB Hub5’00 evaluation set when 2,000 h training set
is used

CD-DNN-HMM DNN-GMM-HMM

CE MMI ML RDLT +MMI

14.6 % 13.3 % 15.6 % 14.5 % 13.0 %

DNN has seven hidden layers each with 2 K neurons. The output layer has 18 K senones. (Summa-
rized from [10] and [14])

http://dx.doi.org/10.1007/978-1-4471-5779-3_6
http://dx.doi.org/10.1007/978-1-4471-5779-3_8
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Table 10.5 Compare AE-BN system with baseline GMM-HMM system

Training method Baseline GMM-HMM (%) GMM-HMM with AE-BN (%)

FSA 20.2 17.6

+fBMMI 17.7 16.6

+BMMI 16.5 15.8

+MLLR 16.0 15.5

WER on English broadcast news dataset with 430 h training data. (Summarized from [17])

DNN-GMM-HMM slightly outperforms the MMI trained CD-DNN-HMM system.
Combining the results in these two tables we can see that DNN-GMM-HMM, despite
the increased complexity, does not have clear advantage over CD-DNN-HMM.

In the previous discussion, the DNN features are derived directly from the hidden
layers. In [17] Sainath et al. investigated a less direct way of producing DNN-derived
features for the GMM. In their setup, a DNN with six hidden layers of 1,024 neurons
each was trained to classify 384 HMM states. Same as that in [10] the DNN did
not have a bottleneck layer and so that it can classify the HMM states better than
a DNN with a bottleneck layer. Different from [10], however, they used the excitation
(before the softmax function is applied) of the output layer instead of the last hidden
layer to derive the features. The 384 excitation values were compressed down to 40
values using a 384-128-40-384 autoencoder. This method of producing the DNN-
derived features is referred as AE-BN because the bottleneck is in the autoencoder
rather than in the DNN that is trained to classify HMM states.

They compared the results (shown in Table 10.5) with and without using AE-BN
features in the GMM-HMM system on the English broadcast news task with 430 h
training data. From the table, we can observe that with the same training meth-
ods, which include feature-space speaker adaptation (FSA), feature-space BMMI
(fBMMI), BMMI [18], and maximum likelihood linear regression (MLLR) [19],
the system with AE-BN feature always performs better than that without. They also
compared the GMM-HMM system that uses the AE-BN features with the plain CD-
DNN-HMM on a smaller task. By comparing the results in [17] and [20], we can
observe that CD-DNN-HMM slightly outperforms the AE-BN system if the same
training criterion is used.

10.2 Fuse Recognition Results

The errors made by the conventional GMM-HMMs and that by DNN-HMMs are
different. This provides the possibility of improving the overall performance by
fusing the complementary recognition results of the GMM-HMM and DNN-HMM
systems. The mostly widely used system combination techniques are recognizer
output voting error reduction (ROVER) [21], segmental conditional random field
(SCARF) [22], and minimum Bayesian risk (MBR) based lattice combination [23].
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10.2.1 ROVER

ROVER [21] is a two-step procedure comprised of alignment and voting as shown
in Fig. 10.4. In the alignment step, an example of which is depicted in Fig. 10.3,
the recognition results from two or more ASR systems are combined into a single
word transition network (WTN). To align and combine three or more ASR results
we first create a linear WTN for each of the ASR system outputs. In Fig. 10.3, for
example, linear WTNs are created for three ASR results in step 1. By restricting
the WTNs to linear topology, we can significantly simplify the combination process.
To achieve best results these linear WTNs are ordered by increasing WER. The
first WTN (WTN-1 in Fig. 10.3), which has the lowest WER, is designated as the
base WTN from which the composite WTN is developed. The second WTN is then
aligned to the base WTN using the dynamic programming (DP) alignment protocol.
We then augment the base WTN with word transition arcs from the second WTN as

Fig. 10.3 Illustration of the
word transition network
(WTN) composition
procedure. In Step 1, a linear
WTN is generated for each
ASR result. In Step 2, WTN-1
is selected as the base WTN
to which WTN-2 is aligned.
WTN-2 is merged into the
base WTN in Step 3. In Step
4, WTN-3 is further merged
into the base WTN

a b c d

b z d e

b c d e f

WTN-1
WTN-2
WTN-3

a b c d
b z d e

WTN-Base
WTN-2

***
***

a b c dWTN-Base null

a b c dWTN-Base null null

null b z d e

null b z d e null

null b c d e f

(Step 1)

(Step 2)

(Step 3)

(Step 4)

System 1

System 2

...

System N

Alignment Voting
Best Score 

Transcription

Fig. 10.4 Processing steps in ROVER
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Table 10.6 The effect of system combination using ROVER

Method 50 h (%) 430 h (%)

Baseline GMM-HMM 18.8 16.0

GMM-HMM with AE-BN 17.5 15.5

ROVER over two 16.4 15.0

WER on the English broadcast news task. (Summarized from [17])

appropriate as shown in Step 3. With this new base WTN, the third WTN is merged
into the base WTN as shown in Step 4. The process is repeated until all linear WTNs
are merged into the base WTN.

Once the combined WTN is generated, the voting module evaluates each branching
point using a voting scheme, which selects the best scoring word (with the highest
number of votes) for the new transcription. There can be many different voting
schemes, for example, based on frequency of occurrence, frequency of occurrence
and average word confidence, or frequency of occurrence and maximum confidence.
The general scoring formula is

score (w, i) = 1

N

N∑
n=1

[
αδ

(
w, wn,i

) + (1 − α) λnconfn (w, i)
]
, (10.1)

where λn is the system dependent weight, δ is the Kronecker-δ, i denotes the position
in the alignment, N is the number of systems, and conf(w, i) is the confidence score
of word w at position i . Majority vote and averaged confidence score are smoothly
interpolated via α, which is trained on a development set.

It has been shown that ROVER over different systems almost always provide
additional improvement on the recognition accuracy. For example, Sainath et al.
[17] reported that on the English broadcast news task, they can achieve additional
0.9 and 0.5 % WER reduction over the AE-BN system, respectively, trained with
50 and 430 h of training data, by combining the AE-BN system and the baseline
GMM-HMM system as shown in Table 10.6.

10.2.2 SCARF

In the SCARF [22] framework, the conditional probability of a state sequence s given
an observation sequence o is given by

p (s|o) =
∑

q:|q|=|s| exp
(∑

e∈q,k λk fk
(
se
l , se

r , o (e)
))

∑
s′

∑
q:|q|=|s′| exp

(∑
e∈q,k λk fk

(
s
′e
l , s′e

r , o (e)
)) , (10.2)

whereas se
l and se

r are the left and right states associated with an edge e in the
recognition lattice, q is a segmentation of the observation sequence which induces a
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Fig. 10.5 An example of
SCARF. Shown in figure are
three hypothesized states
aligned with seven
observations. s1 equals to se

l ,
the left state of edge e, and
s2 equals to se

r , the right state
of edge e. o(e) = {o3, o4}

e

S1 S2 S3

o1 o2 o3 o4 o5 o6 o7

Sl
e

Sr
e

set of edges e ∈ q between the states, o(e) is the segment associated with the right-
hand state se

r and spans a block of observations from some start time to some end time,
fk

(
se
l , se

r , o (e)
)

is a feature defined over the edge and associated segment, and λk

is the weight associated with the feature. Figure 10.5 depicts an example SCARF, in
which three states are hypothesized and aligned with seven observations. Weights λk

are optimized to maximize the sequence conditional log-likelihood over a training set.
The key to the success of the SCARF model is the features extracted from recog-

nition lattices generated by different ASR systems. Typical features used are [22]:

• Expectation features: defined with reference to a dictionary that specifies the
spelling of each word in terms of the units.

• Levenshtein features: computed by aligning the observed unit sequence in a
hypothesized span with that expected based on the dictionary entry for the word.

• Existence features: indicate the simple association between a unit in a detection
stream, and a hypothesized word.

• Language model features: derived directly from LM.
• Baseline features: extracted from the baseline one-best sequence. The baseline

feature for a segment is +1 when the hypothesized segment spans exactly one
baseline word, and the label of the segment matches the baseline word. Otherwise
it is −1.

In [24], Jaitly et al. applied the SCARF technique to combine the GMM-HMM
system with the CD-DNN-HMM system. They reduced WER by 0.4 % (from 12.2
to 11.8 %) and 0.9 % (from 47.1 to 46.2 %) over the MMI trained CD-DNN-HMM
system on the voice search and YouTube tasks, respectively.

10.2.3 MBR Lattice Combination

The MBR combination [23] finds the word sequence that minimizes the expected
word error rate across the different systems being combined as

w∗ = arg min
w

{
N∑

n=1

λn

∑
w′

Pn (w|o) L
(
w, w′)

}
, (10.3)



186 10 Fuse Deep Neural Network and Gaussian Mixture Model Systems

where L
(
w, w′) is the Levenshtein distance between two word sequences w and w′

and Pn (w|o) is the posterior probability of the word sequence w given the acoustic
observation sequence o as computed by the n-th model. Pn (w|o) can be estimated as

Pn (w|o) = pn (o|w)κ P (w)∑
w pn (o|w)κ P (w)

, (10.4)

where κ is the acoustic scaling factor.
In [25], Swietojanski et al. reported that by combining the GMM-HMM and

DNN-HMM systems with the MBR lattice combination technique they can achieve
1–8 % relative WER reduction over the DNN-HMM system across different setups.
However, MBR lattice combination is less robust than ROVER as it sometimes
increases the error rates.

10.3 Fuse Frame-Level Acoustic Scores

The systems can also be fused at the frame or state acoustic score level. The simplest
yet effective approach is to perform frame-synchronous combination using a linear
interpolation of the observation log-likelihoods of multiple systems as

log p (o|s) =
N∑

n=1

αn log pn (o|s) , (10.5)

where αn is the interpolation weight for system n, p (o|s) is the combined observation
score of observation o given the state s, and pn (o|s) is the score from the nth
system. For the GMM-HMM system, this is simply the observation probability. For
DNN-HMM hybrid systems, this is the scaled likelihood. Alternatively, we can model
the state posterior probability

log p (s|o) =
N∑

n=1

αn log pn (s|o) (10.6)

instead. Note that this is a log-linear model with frame posterior scores as features
and thus can be easily implemented with a neural network with no hidden layer.
Additional improvement can be achieved by including hidden layers. The benefit of
this formulation is that the frame cross-entropy (CE) and sequence discriminative
training technique described in Chaps. 6 and 8 can be easily applied to train the
interpolation weights or the fusing network.

In [25], Swietojanski et al. reported that by combining the frame likelihoods
of GMM-HMM and DNN-HMM systems they can achieve 1–8 % relative WER
reduction across different setups similar to the gains they achieved with the MBR
lattice combination. Note, however, since GMM-HMM systems typically perform

http://dx.doi.org/10.1007/978-1-4471-5779-3_6
http://dx.doi.org/10.1007/978-1-4471-5779-3_8
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significantly worse than the CD-DNN-HMMs, the possible improvement is very
limited.

A better approach is to combine the DNN-GMM-HMM that uses the DNN derived
features with the CD-DNN-HMM system. This combination comes with two benefits.
First, the DNN-GMM-HMM system performs very close to the CD-DNN-HMM
system yet their results are still complementary. Second, since the same DNN is used
in both the DNN-GMM-HMM and the CD-DNN-HMM systems the additional cost
introduced during the decoding phase is very limited, especially when the architecture
in Fig. 10.1a is used. By combining these two systems, we typically can obtain
5–10 % relative WER reduction over the CD-DNN-HMM system.

10.4 Multistream Speech Recognition

It is well known that the fixed-resolution (in both time and frequency domain) feature
processing front-end used in the state-of-the-art speech recognition systems is a result
of trade-off which does not model many phenomena well. For example, Huang
et al. [26] showed that both CD-GMM-HMM and CD-DNN-HMM systems perform
significantly worse when the speaking rate is very high or very low. One potential
solution to this problem is a multistream system [27, 28] that can accommodate
multiple time and/or frequency resolutions. The key design question of a multistream
speech recognition system is how to combine streams. Figures 10.6, 10.7 and 10.8
illustrates three popular architectures used in the multistream speech recognition:

• Early integration: In the early integration architecture, the features are directly
combined (e.g., concatenated) and processed by a single DNN-HMM to generate
the decoding result.

• Intermediate integration: In the intermediate integration architecture, features in
each stream are processed independently (e.g., with separate DNNs) first and then
integrated at an intermediate stage. The integrated intermediate representations are
then further processed by a single DNN-HMM for generating the final decoding
result.

• Late integration: In the late integration architecture, features in each stream is
processed independently with a separate DNN-HMM. The decoding results of
each stream is then combined (e.g., through ROVER) to generate the final result.

There are many different kinds of streams. For example, we can use each narrow
frequency sub-band as a stream. Such a system is often referred as multiband speech
recognition system. Alternatively, we cause different feature extraction pipelines such
as PLP and MFCC as streams. Such a system is sometimes called multichannel speech
recognition system. Another popular way to construct streams is to use features
extracted with different sampling rate, window size, or filter banks.

The work of Fletcher and his colleagues [29] suggests that in human speech
perception narrow frequency sub-bands are processed independently, which favors
the multiband system, and the decisions from these sub-bands are combined at
some intermediate level, which favors the intermediate-integration framework. These
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Stream 1 Stream 2 Steam 3

DNN 

Final Result

HMM

Fig. 10.6 An early-integration, multistream speech recognition architecture in which the features
from all streams are combined and processed by a single DNN-HMM to generate the decoding result

Stream 1

DNN 1

Stream  2

DNN 2

Stream  3

DNN 3

DNN for 
Combination

Final Result

HMM

Fig. 10.7 An intermediate-integration, multistream speech recognition architecture in which fea-
tures in each stream is processed independently using separate DNNs first and then integrated at
an intermediate stage. The integrated intermediate representations are then further processed by a
single DNN-HMM for generating the final decoding result

results are combined in such a way that the global error rate is equal to the product
of error rates in the sub-bands. This product-of-error rule is very strong and essen-
tially means that even if only one sub-band processing pipeline gives the correct



10.4 Multistream Speech Recognition 189

Stream  1

HMM 1

DNN 1

Stream  2

HMM 2

DNN 2

Stream 3

HMM 3

DNN 3

Combine Results

Final Result

Fig. 10.8 A late-integration, multistream speech recognition architecture in which the decoding
results of all the independently processed streams are combined to make the final decoding decision

result the system will recognize the utterance accurately. In [30], Zhou et al. com-
pared early-integration, intermediate-integration, and late-integration architectures
for multichannel speech recognition. Their results demonstrate that the intermediate-
integration approach performs the best and reduces error by 6 % relative to the best
singe-stream system on the TIMIT phone recognition task.
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Chapter 11
Adaptation of Deep Neural Networks

Abstract Adaptation techniques can compensate for the difference between the
training and testing conditions and thus can further improve the speech recognition
accuracy. Unlike Gaussian mixture models (GMMs), which are generative models,
deep neural networks (DNNs) are discriminative models. For this reason, the adap-
tation techniques developed for GMMs cannot be directly applied to DNNs. In this
chapter, we first introduce the concept of adaptation. We then describe the important
adaptation techniques developed for DNNs, which are classified into the categories
of linear transformation, conservative training, and subspace methods. We further
show that adaptation in DNNs can bring significant error rate reduction at least for
some speech recognition tasks and thus is as important as that in the GMM systems.

11.1 The Adaptation Problem for Deep Neural Networks

As in other machine learning techniques, in DNN systems it is assumed that the
training and testing data follow the same probability distribution. In reality, however,
this assumption is hardly satisfied. This is because before a speech application is
deployed there is no matching training data. The application has to be bootstrapped
from mismatched data. After the application is deployed some matched data can be
collectedunder the real usage scenarios.However, at the early stage of the deployment
the amount of matched data is often small and cannot cover many phenomena that
may be observable in the subsequent usage. Even if enoughmatched training data are
available after the application has been deployed for years, the mismatch problem
may still exist. This is because DNN training optimizes for the average performance
over the distribution of the training data. As a result, when targeting at a specific
environment or speaker the training and testing conditions are still mismatched.

The training–testingmismatch problem can be solved with adaptation techniques,
which either adapt the model to match better the testing condition or adapt the testing
inputs to fit better the model. For example, in the conventional Gaussian mixture
model (GMM)-hidden Markov model (HMM) speech recognition systems, speaker-
adapted (SA) systems can cut errors by 5–30% over the speaker-independent (SI)
systems.Well known effective adaptation techniques in the GMM–HMM framework
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include maximum likelihood linear regression (MLLR) [11, 20, 34], constrained
MLLR (cMLLR) [10] which is also known as the feature-domain MLLR (fMLLR),
maximum a posteriori linear regression (MAP-LR) [7, 19], and vector Taylor series
(VTS) expansion [18, 22–24, 26]. Many of these techniques can be applied to deal
with both environment and speaker mismatches.

If the transcription is available for the adaptation data, it is called supervised
adaptation; otherwise, it is called unsupervised adaptation, in which case the tran-
scription needs to be inferred from the acoustic features. In most cases, the inferred
transcription, often called pseudo-transcription, can be obtained by decoding the
utterance using the speaker-independent models. This is the approach assumed in
the following discussions. Under some strict conditions, the adaptation transcription
may be inferred by exploiting the structures in the data, e.g., based on the distance
between the feature vectors with and without labels. No matter which approach is
used, the pseudo-transcription inevitably contains errors which will reduce the effect
of adaptation. Furthermore, adaptationwith the pseudo-transcription as the label rein-
forces what the model already can do well but limits what it can learn from what the
SI model does not perform well. All these factors will limit the potential recognition
accuracy improvement achievable from using the unsupervised adaptation.

Unlike GMMs, which are generative models, DNNs are discriminative models.
For this reason, DNNs require different adaptation techniques than those devel-
oped for GMMs. For example, the model-space transform-based approaches such as
MLLR that work well for GMMs cannot be directly ported to DNNs. This is because
unlike in GMMs where Gaussian means or variances change in the same direction
if they belong to the same phones or HMM states, there is no such structure in the
model parameters of a DNN.

Note that DNN is a special case of themultilayer perceptron (MLP) and so some of
the adaptation techniques developed forMLPs can be applied toDNNsdirectly.How-
ever, compared to the earlier ANN/HMMhybrid systems [27], the context-dependent
(CD)-DNN-HMMs, that are typically used in the large vocabulary continuous speech
recognition (LVCSR) systems, have significantly more parameters due to wider and
deeper hidden layers used and themuch larger output layer designed tomodel senones
(tied-triphone states) directly. This difference casts additional challenges to adapting
CD-DNN-HMMs, especially when the adaptation set is small.

Over the years many techniques have been developed to adapt DNNs. These
techniques can be classified into three categories: linear transformation, conservative
training, and subspace method. We will discuss these techniques in detail in the
following sections.

11.2 Linear Transformations

The simplest and most popular approach to adapting DNNs is applying a linear
transformation to either the input feature, the activation of a hidden layer, or the
input to the softmax layer. No matter where the linear transformation is applied, it is
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typically trained from an identity weight matrix and zero bias to optimize either the
cross-entropy (CE) training criterion discussed in Chap. 4 (Eq. (4.1)) or the sequence-
discriminative training criterion discussed in Chap. 8 (Eqs. (8.1) and (8.8)), keeping
fixed the weights of the original DNN.

11.2.1 Linear Input Networks

In the linear input network (LIN) [2, 4, 21, 28, 33, 35] and the very similar fea-
ture discriminative linear regression (fDLR) [30] adaptation techniques, the linear
transformation is applied to the input features as shown in Fig. 11.1. The basic idea
behind LIN is that the speaker-dependent (SD) feature can be linearly transformed
to match that of the average speaker specified by the speaker-independent (SI) DNN
model. In other words, we transform the SD feature v0 ∈ R

N0×1 to v0LIN ∈ R
N0×1

by applying a linear transformation specified by the weight matrix WLIN ∈ R
N0×N0

and bias vector bLIN ∈ R
N0×1 as

v0LIN = WLINv0 + bLIN, (11.1)

where N0 is the size of the input layer.

Fig. 11.1 Illustration of the
linear input network (LIN)
and feature discriminative
linear regression (fDLR)
adaptation techniques. A
linear layer is inserted right
above and applied upon the
input feature layer

Output Layer (often seones)

Added 

Linear Layer

Original  

W1

WLIN

Hidden Layers

http://dx.doi.org/10.1007/978-1-4471-5779-3_4
http://dx.doi.org/10.1007/978-1-4471-5779-3_4
http://dx.doi.org/10.1007/978-1-4471-5779-3_8
http://dx.doi.org/10.1007/978-1-4471-5779-3_8
http://dx.doi.org/10.1007/978-1-4471-5779-3_8
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In speech recognition, the input feature vector v0 (t) = ot = [
xmax(0,t−�) · · · xt

· · · xmin(T,t+�)

]
at time t for an utterance with T frames often covers 2� + 1

frames. When the adaptation set is small, it is desirable to apply a smaller per-frame

transformation
[
WLIN

f ∈ R
D×D, bLIN

f ∈ R
D×1

]
as

xLIN = WLIN
f x + bLIN

f , (11.2)

and the transformed input feature vector can be constructed as v0LIN (t) = oLINt =[
xLINmax(0,t−�) · · · xLINt · · · xLINmin(T,t+�)

]
, where D is the dimension of each feature

frame and N0 = (2� + 1) D. Since WLIN
f has only 1

(2�+1)2
of parameters as that in

WLIN, it has less transformation power and is less effective than WLIN. However, it
can be more reliably estimated from a small adaptation set and thus may outperform
WLIN overall.

11.2.2 Linear Output Networks

The linear transformation can also be applied to the softmax layer, in which case
the adapted network is called linear output network (LON) [21] or output-feature
discriminative linear regression (oDLR) [40, 43]. This is because all the hidden layers
in the DNN can be considered as a complicated nonlinear feature transformation
module and the last hidden layer can be considered as the transformed feature as we
have discussed in Chap. 9. It is thus reasonable to apply a linear transformation on
the last hidden layer for a specific speaker so that after the linear transformation it
matches better to the average speaker. Different from the LIN/fDLR though, there
are two ways to apply the linear transformation in LON/oDLR as shown in Fig. 11.2.

In Fig. 11.2a, the linear transformation is applied after the softmax layer weights.
In other words,

zL
LONa = WLON

a zL + bLON
a

= WLON
a

(
WLvL−1 + bL

)
+ bLON

a

=
(

WLON
a WL

)
vL−1 +

(
WLON

a bL + bLON
a

)
, (11.3)

where the DNN is assumed to have L layers, NL−1 and NL are the number of
neurons at layer L −1 (last hidden layer) and L (softmax layer), respectively, vL−1 ∈
R

NL−1×1 is the speaker-independent feature at the last hidden layer, zL ∈ R
NL×1 is

the excitation of the softmax layer without adaptation, WL and bL are the softmax
layer weight matrix and bias vector, respectively on the speaker-independent DNN,
WLON

a ∈ R
NL×NL and bLON

a ∈ R
NL×1 are the transformation matrix and the bias

http://dx.doi.org/10.1007/978-1-4471-5779-3_9
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Output Layer (often seones)Output Layer (often seones)(a) (b)
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Hidden Layers

Added 
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Fig. 11.2 Illustration of the linear output network (LON). The linear transformation can be applied
after (a) or before (b) the original weight matrix WL is applied

vector, respectively, in the LON(a), and zL
LONa ∈ R

NL×1 is the excitation after the
linear transformation.

In Fig. 11.2b, the linear transformation is applied before the softmax layerweights,
or

zL
LONb = WLvL−1

LONb + bL

= WL
(

WLON
b vL−1 + bLON

b

)
+ bL

=
(

WLWLON
b

)
vL−1 +

(
WLbLON

b + bL
)

, (11.4)

where vL−1
LONb ∈ R

NL−1×1 is the transformed feature at the last hidden layer, and
WLON

b ∈ R
NL−1×NL−1 and bLON

b ∈ R
NL−1×1 are the transformation matrix and the

bias vector, respectively, in the LON(b).
It is clear that these two approaches are equally powerful since the linear transfor-

mation of a linear transformation equals to a single linear transformation as shown in
Eqs. (11.3) and (11.4). However, the number of parameters in these two approaches
can be significantly different. If the number of output neurons is smaller than that of
the last hidden layer, as in the case of monophone systems, WLON

a is smaller than
WLON

b . In the CD-DNN-HMM systems, however, the output layer size is signifi-
cantly larger than that of the last hidden layers. As a result WLON

b is significantly
smaller than WLON

a and can be more reliably estimated from the adaptation data.
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11.3 Linear Hidden Networks

In the linear hidden network (LHN) [12], the linear transformation is applied to the
hidden layers. This is because, as discussed in Chap.9, a DNN can be separated into
two parts at any hidden layer. The part that contains the input layer can be considered
as a feature transformation module and the hidden layer that separates the DNN can
be considered as a transformed feature. The part that contains the output layer can
be considered as a classifier that operates on the hidden layer feature.

Similar to that in LON, in LHN there are also two ways to apply the linear
transformation as shown in Fig. 11.3. For the same reason, we just discussed these
two adaptation approaches that have the same adaptation power. Unlike in LON
where the size of WLON

a and WLON
b can be significantly different, though, in LHN

WLHN
a andWLHN

b often have the same size because in many systems the hidden layer
sizes are the same.

The effectiveness of LIN, LON, and LHN is task dependent. Although they are
very similar, there are subtle differences with regard to the number of parameters
and the variability of the feature adapted as we just discussed. These factors together
with the size of the adaptation set determine which technique is best for a specific
task.

Output Layer (often seones)(b)Output Layer (often seones)(a)

Added 
Linear Layer

Original  
Hidden Layers

Added 
Linear Layer

Original  
Hidden Layers

Fig. 11.3 Illustration of the linear hidden network (LHN). The linear transformation can be applied
after (a) or before (b) the original weight matrix W� at hidden layer � is applied

http://dx.doi.org/10.1007/978-1-4471-5779-3_9
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11.4 Conservative Training

Although the linear transformation adaptation techniques can be useful under
some conditions, their effectiveness is highly restricted by the linear transforma-
tion nature. A potentially more effective approach is to adapt all the parameters
in the DNN to optimize the adaptation criterion J (W, b;S) over the adaptation set
S = {(om, ym) |0 ≤ m < M}, where J (W, b;S) can be either the cross-entropy (CE)
training criterion discussed in Chap. 4 (Eq. (4.11)) or the sequence-discriminative
training criterion discussed in Chap.8 (Eqs. (8.1) and (8.8)).

Unfortunately, this seemingly simple approach may destroy previously learned
information and thus is not reliable especially since the adaptation set size is typically
very small compared to the number of parameters in the DNN. To prevent this
from happening, some conservative training (CT) [3, 25, 32, 43] strategy is needed.
Conservative training (CT) can be achieved by adding regularization to the adaptation
criterion. A simple heuristic is to adapt only selected weights. For example, in [32],
only weights connected to the hidden nodes with maximum variance computed on
the adaptation data are adapted. Alternatively, we can only adapt the large weights
in the DNN. Adaptation with very small learning rate and early stopping can also be
considered as CT.

In this section,we describe the twomost popular explicit regularization techniques
used in CT: L2 regularization [25] and Kullback–Leibler divergence (KLD) regular-
ization [43]. We also discuss techniques that can be used to reduce the footprint of
the adapted models.

11.4.1 L2 Regularization

The basic idea of the L2 regularized CT is to add the L2 norm of the model parameter
difference

R2 (WSI − W) = ‖vec (WSI − W)‖22
=

L∑
�=1

∥∥∥vec
(

W�
SI − W�

)∥∥∥2
2

(11.5)

between the speaker-independentmodelWSI and the adaptedmodelW to the adapta-
tion criterion J (W, b;S), where vec

(
W�

) ∈ R[N�×N�−1]×1 is the vector generated
by concatenating all the columns in the matrix W�, and

∥∥vec (
W�

)∥∥
2 equals to∥∥W�

∥∥
F—the Frobenious norm of the matrix W�.

When this L2 regularization term is included, the adaptation criterion becomes

JL2 (W, b;S) = J (W, b;S) + λR2 (WSI, W) , (11.6)

http://dx.doi.org/10.1007/978-1-4471-5779-3_4
http://dx.doi.org/10.1007/978-1-4471-5779-3_4
http://dx.doi.org/10.1007/978-1-4471-5779-3_8
http://dx.doi.org/10.1007/978-1-4471-5779-3_8
http://dx.doi.org/10.1007/978-1-4471-5779-3_8
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where λ is a regularization weight that controls the relative contribution of the two
terms in the adaptation criterion. The L2 regularized CT aims to constrain the change
of the model parameter of the adapted model with regard to the speaker-independent
model. Since the training criterion Eq. (11.6) is very similar to the weight decay we
discussed in Sect. 4.3.3 of Chap. 4, the same training algorithm can be used directly
in the L2 regularized CT adaptation.

11.4.2 KL-Divergence Regularization

The intuition behind the KLD regularization approach is that the senone posterior
distribution estimated from the adapted model should not deviate too far away from
that estimated from the unadapted model. Since the DNN outputs are probability
distributions, a natural choice in measuring the deviation is the Kullback–Leibler
divergence (KLD). By adding this divergence as a regularization term to the adapta-
tion criterion and removing the terms unrelated to the model parameters, we get the
regularized optimization criterion

JKLD (W, b;S) = (1 − λ) J (W, b;S) + λRKLD (WSI,bSI; W, b;S) , (11.7)

where λ is a regularization weight,

RKLD (WSI,bSI; W, b;S) = 1

M

M∑
m=1

C∑
i=1

PSI (i |om; WSI,bSI) log P (i |om; W, b) ,

(11.8)
PSI (i |om; WSI,bSI) and P (i |om; W, b) are the probability that the mth observa-
tion om belongs to class i , estimated from the speaker-independent and the adapted
DNNs, respectively, andwill be simplified as PSI (i |om) and P (i |om) in the following
discussion. If the cross-entropy (CE) criterion

JCE (W, b;S) = 1

M

M∑
m=1

JCE
(
W, b; om, ym)

(11.9)

is used, where

JCE (W, b; o, y) = −
C∑

i=1

Pemp (i |om) log P (i |om) , (11.10)

and Pemp (i |o) is the empirical (observed in the adaptation set) probability that the
observation o belongs to class i , the regularized adaptation criterion can be converted
to

http://dx.doi.org/10.1007/978-1-4471-5779-3_4
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JKLD-CE (W, b;S) = (1 − λ) JCE (W, b;S) + λRKLD (WSI,bSI; W, b; S)

= − 1

M

M∑
m=1

C∑
i=1

(
(1 − λ) Pemp (i |om) + λPSI (i |om)

)
log P (i |om)

= − 1

M

M∑
m=1

C∑
i=1

P̈ (i |om) log P (i |om) , (11.11)

where we defined

P̈ (i |om) = (1 − λ) Pemp (i |om) + λPSI (i |om) . (11.12)

Note that Eq. (11.11) has the same form as the CE criterion except that the
target distribution is now an interpolated value between the empirical probability
Pemp (i |om) and the probability PSI (i |om) estimated from the SI model. This inter-
polation prevents overtraining by keeping the adapted model from straying too far
away from the SI model. It also indicates that the normal backpropagation (BP) algo-
rithm can be directly used to adapt the DNN. The only thing needs to be changed is
the error signal at the output layer, which is now defined based on P̈ (i |om) instead
of Pemp (i |om).

Note that the KLD regularization differs from the L2 regularization, which con-
strains the model parameters themselves rather than the output probabilities. Since
what we care about is the output probability instead of the model parameters them-
selves, KLD regularization is more attractive and often performs better than the L2
regularization.

The interpolation weight, which is directly derived from the regularization weight
λ, can be adjusted, typically using a development set, based on the size of the adapta-
tion set, the learning rate used, and whether the adaptation is supervised or unsuper-
vised. When λ = 1, we trust completely the SI model and ignore all new information
from the adaptation data. When λ = 0, we adapt the model solely on the adaptation
set, ignoring information from the SI model except using it as the starting point.
Intuitively, we should use a large λ for a small adaptation set and a small λ for a large
adaptation set.

TheKLD regularized adaptation technique can be easily extended to the sequence-
discriminative training. As discussed in Sect. 8.2.3, to prevent overfitting the frame
smoothing is often used in the sequence-discriminative training which leads to the
interpolated training criterion

JFS-SEQ (W, b;S) = (1 − H) JCE (W, b;S) + H JSEQ (W, b;S) , (11.13)

where H is the frame smoothing factor often set empirically. By adding the KLD
regularization term, we get the adaptation criterion

JKLD-FS-SEQ (W, b;S) = JFS-SEQ (W, b;S) + λs RKLD (WSI,bSI; W, b;S) ,

(11.14)

http://dx.doi.org/10.1007/978-1-4471-5779-3_8
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where λs is the regularization weight for the sequence-discriminative training.
JKLD-FS-SEQ can be converted to

JKLD-FS-SEQ (W, b;S) = H JSEQ (W, b;S) + (1 − H + λs) JKLD-CE (W, b;S)

(11.15)
following the similar derivation by defining λ = λs

1−H+λs
.

11.4.3 Reducing Per-Speaker Footprint

Conservative training can alleviate the overfitting problem in the adaptation process.
However, it cannot solve the problem that a huge adapted model needs to be saved
for each speaker. Since the DNN model typically has huge number of parameters
the adapted model may be too large to be stored at either the client side (e.g., on an
intelligent watch) or the server side (especially when the number of users is large).

The simplest approach to reduce the footprint is to adapt only part of the model.
For example, we can adapt only the input layer, the output layer, or a specific hidden
layer. Experiments conducted, however, indicate that adapting all layers in the DNN
often achieves better performance than adapting only a subset of the layers.

Fortunately, techniques have been developed to reduce the per-speaker footprint
while keeping the benefit achievable from adapting all the layers. Here, we describe
two of such approaches proposed in [36].

The first approach is to store the compressed parameter difference between the
speaker-independent model and the speaker-adaptedmodel. Since the adaptedmodel
is very close to the SI model it is reasonable to believe that the delta matrices can be
approximatedwith low-rankmatrices. In otherwords,we can apply the singular value
decomposition (SVD) technique to the delta matrices �Wm×n = WAD P

m×n − WSI
m×n

as

�Wm×n = Um×n�n×nVT
n×n

≈ Ũm×k�̃k×kṼT
k×n

= Ũm×kW̃T
k×n, (11.16)

where �Wm×n ∈ R
m×n , �n×n is a diagonal matrix that contains all the singular

values, k < n is the number of singular values kept, U and VT are unitary, the
columns of which form a set of orthonormal vectors, which can be regarded as basis
vectors, and W̃T

k×n = �̃k×kṼT
k×n . Here, we only need to store Ũm×k and W̃T

k×n
which contain (m + n) k parameters instead of m × n parameters. Experiments in
[36] have shown that no or little accuracy loss is observed even if only less than 10%
of delta parameters are stored.

The second approach is applied on top of the low-rank model approximation
technique we have discussed in Chap.7 as shown in Fig. 11.4. In Chap.7, we have
shown that a fully connected weight matrix Wm×n ∈ R

m×n in the original DNN

http://dx.doi.org/10.1007/978-1-4471-5779-3_7
http://dx.doi.org/10.1007/978-1-4471-5779-3_7
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Fig. 11.4 Illustration of the SVD bottleneck adaptation technique

(Fig. 11.4a) can be approximated with two smaller matrices W1,r×n ∈ R
r×n and

W2,m×r ∈ R
m×r as shown in Fig. 11.4b. To adapt this model, we insert another layer

specified by the matrix W3,r×r ∈ R
r×r as shown in Fig. 11.4c. For the SI model, this

matrix is set to the identity matrix. For the adapted model, this matrix is adapted to a
specific speakerwhile keepingmatricesW1,r×n andW2,m×r at all layers fixed. In this
approach, the speaker-specific information is stored inside W3,r×r which contains
only r × r instead of m × n parameters. Since r is significantly smaller than both m
and n, this approach can reduce the per-speaker footprint significantly. For this same
reason, hSI

linear and hADP
linear are bottleneck layers in the model and thus this approach

is called SVD bottleneck adaptation technique in [36]. This technique allows us
to adapt all layers in the DNN while keeping the adapted matrix small for each
speaker. This dramatically reduces the deployment cost for speaker personalization,
and, at the same time can potentially reduce the amount of adaptation data needed
for each new speaker. Experiments conducted by Xue et al. [36] indicate that this
approach can reduce the per-speaker cost to 1%of the originalDNNwithout affecting
the adaptation quality. Since in real-world deployment the low-rank approximation
basedmodel compression technique is often used and the SVD bottleneck adaptation
technique has extremely low footprint for each speaker, it is one of the desired
techniques for DNN adaptation.

Note that the SVD factorization of the model parameters also suggests another
model adaptation technique [38]. Recall that at each layer the model weights W can
be factorized into three components using SVD

Wm×n = Um×n�n×nVT
n×n, (11.17)

where� is a diagonal matrix consisted of nonnegative singular values in the decreas-
ing order, U and VT are unitary, the columns of which form a set of orthonormal
vectors. Here, � plays an important role and since it’s a diagonal matrix the number
of parameters in � is very small and equals to n. We can, instead of adapting the
whole weight matrix W, only adapt this diagonal matrix. If the adaptation set is
small, we may even only adapt the top k% of the singular values.
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11.5 Subspace Methods

Subspace methods aim to find a speaker subspace and then construct adapted ANN
weights or transformations as a point in the subspace. Promising techniques in this
category include principal component analysis (PCA) based approach [9], noise-
aware [31] (which we have discussed in Chap.9) and speaker-aware training [29],
and tensor-based adaptation [41, 42]. Techniques in this category can adapt the SI
model to a specific speaker very quickly.

11.5.1 Subspace Construction Through Principal Component
Analysis

In [9], a fast adaptation technique was proposed. In this technique, subspace is used
to estimate an affine transformation matrix by considering it as a random variable.
Principal component analysis (PCA) was performed on a set of adaptation matrices
to obtain the principal directions (i.e., eigenvectors) in the speaker space. Each new
speaker adaptationmodel is then approximatedby a linear combinationof the retained
eigenvectors.

The above mentioned technique can be extended to a more general condition.
Given a set of S speakers, we can estimate a speaker-specific matrix WADP ∈ R

m×n

for each speaker. Here, the speaker-specific matrix can be the linear transformation
in LIN, LHN, or LON, or the adapted weights or delta weights in the conservative
training. Denote a = vec

(
WADP

)
, the vectorization of the matrix, each matrix can

be considered as an observation of a random variable in a speaker space of dimension
m × n. PCA can then be performed on the set of S vectors in the speaker space. The
eigenvectors obtained from the PCA define principal adaptation matrices.

This approach assumes that new speakers can be represented as a point in the space
spanned by the S speakers. In other words, S is big enough to cover the speaker space.
Since each new speaker is represented by the linear combination of the eigenvectors,
when S is large, the total number of linear interpolation weights can also be large.
Fortunately, the dimensionality of the speaker space can be reduced by discarding the
eigenvectors that correspond to small variances. In this way, each speaker-specific
matrix can be efficiently represented by a reduced number of parameters.

For each new speaker,

a = a + Uga ≈ a + Ũg̃a (11.18)

where U = (u1, . . . , uS) is the eigenvectors matrix, Ũ = (u1, . . . , uk) is the reduced
eigenvectors matrix, k is the number of retained eigenvectors, ga and g̃a are the
full and reduced projection of the adaptation parameters vector onto the principal
directions, and a is the mean (across speakers) of the adaptation parameters. a and Ũ
are estimated from the training set consisted of S speakers. g̃a is estimated for each
new speaker from the adaptation set.

http://dx.doi.org/10.1007/978-1-4471-5779-3_9
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Fig. 11.5 Illustration of
speaker-aware training. There
are two sets of
time-synchronous inputs: one
set of acoustic features for
phonetic discrimination and
another set of features that
characterizes the speaker

Speaker 
Info

Acoustic 
Feature

11.5.2 Noise-Aware, Speaker-Aware, and Device-Aware Training

Another set of subspace approaches explicitly estimate the noise or speaker informa-
tion from the utterance and provide this information to the network in hope that the
DNN training algorithm can automatically figure out how to adjust the model para-
meters to exploit the noise, speaker, or device information. We call such approaches
noise-aware training (NaT) when the noise information is used, speaker-aware train-
ing (SaT)when the speaker information is exploited, and device-aware training (DaT)
when the device information is used. Since NaT, SaT, and DaT are very similar and
we have already discussed NaT in Chap.9, we focus on SaT in this subsection by
noting that NaT and DaT can be carried out similarly. Figure11.5 illustrates the
architecture of SaT, in which the input to the DNN has two parts: the acoustic feature
and the speaker information (or noise information if NaT is used).

The reason SaT helps to boost the performance of DNNs can be easily understood
with the following analysis. Without the speaker information, the activation of the
first hidden layer is

v1 = f
(

z1
)

= f
(

W1v0 + b1
)

, (11.19)

where v0 is the acoustic feature vector, and W1 and b1 are the corresponding weight
matrix and bias vector, respectively. When speaker information is used, it becomes

http://dx.doi.org/10.1007/978-1-4471-5779-3_9
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v1SaT = f
(

z1SaT
)

= f

([
W1

v W1
s

] [
v0

s

]
+ b1

SaT

)

= f
(

W1
vv0 + W1

s s + b1
SaT

)

= f
(

W1
vv0 +

(
W1

s s + b1
SaT

))
, (11.20)

where s is the vector that characterize the speaker, and W1
v and W1

s are the weight
matrices associated with the acoustic feature and speaker information, respectively.
Compared to the normal DNN, which uses a fixed bias vector b1, SaT uses a speaker-
dependent bias b1

s = W1
s s + b1

SaT. One benefit of SaT is that the adaptation is
implicit and efficient and does not require a separate adaptation step. If the speaker
information can be reliably estimated, SaT is a great candidate for speaker adaptation
in the DNN framework.

The speaker information can be derived in many different ways. For example, in
[1, 37], a speaker code is used as the speaker information. During the training, this
code is jointly learned with the rest of the model parameters for each speaker. During
the decoding process, we first learn a single speaker code for the new speaker using
all the utterances spoken by the speaker. This can be done by treating the speaker
code as part of the model parameters and estimating it using the backpropagation
algorithm keeping rest of the parameters fixed. The speaker code is then used as part
of the input to the DNN to compute the state likelihood.

The speaker information can also be estimated completely independent of the
DNN training. For example, it may be learned from a separate DNN from which
either the output node or the last hidden layer can be used to represent the speaker.
In [29] i-vectors [8, 13] are used instead. I-vector is a popular technique for speaker
verification and recognition. It encapsulates the most important information about
a speaker’s identity in a low-dimensional fixed-length representation and thus is an
attractive tool for speaker adaptation techniques for ASR. I-vector has been used not
only in DNN adaptation, but also in GMM adaptation. For example, it has been used
in [16] for discriminative speaker adaptation with region dependent linear transforms
and in [5, 39] for clustering speakers or utterances formore efficient adaptation. Since
a single low-dimensional i-vector is estimated from all the utterances spoken by the
same speaker, i-vector can be reliably estimated from less data than other approaches.
Since i-vector is an important technique, we summarize its computation steps here.

11.5.2.1 Computation of I-Vector

We denote xt ∈ R
D×1 the acoustic feature vectors generated from a universal back-

ground model (UBM) represented as a GMMwith K diagonal covariance Gaussians

xt ∼
K∑

k=1

ckN (x;μk, �k) , (11.21)
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where ck ,μk , and�k are themixtureweight,Gaussianmean, anddiagonal covariance
of the kth Gaussianmixture.We assume the acoustic feature xt (s) specific to speaker
s are drawn from the distribution

xt (s) ∼
K∑

k=1

ckN (x;μk (s),�k) , (11.22)

where μk (s) are the speaker-specific means of the GMM adapted from the UBM.
We further assume that there is a linear dependence

μk (s) = μk + Tkw (s) , 1 ≤ k ≤ K , (11.23)

between the speaker-adapted means μk (s) and the speaker-independent means μk ,
where Tk ∈ R

D×M is the factor loading submatrix, which contains M bases which
span the subspace with important variability in the component mean vector space,
corresponding to component k, and w(s) is the speaker identity vector (i-vector)
corresponding to speaker s.

Note that the i-vector w is a latent variable. If we assume its prior follows a
Gaussian distribution with a 0-mean and identity covariance, each frame is aligned
to a fixed mixture component, and the factor loading submatrix Tk is known, we can
estimate the posterior distribution [17]

p (w| {xt (s)}) = N

(
w; L−1 (s)

K∑
k=1

TkT �−1
k θk (s), L−1 (s)

)
, (11.24)

where the precision matrix L (s) ∈ R
M×M is

L (s) = I +
K∑

k=1

γk (s)TkT �−1
k Tk, (11.25)

and the zeroth-order and first-order statistics are

γk (s) =
T∑

t=1

γtk (s) , (11.26)

θk (s) =
T∑

t=1

γtk (s) (xt (s) − μk (s)) . (11.27)

with γtk (s) being the posterior probability of mixture component k given xt (s). The
i-vector is simply the MAP point estimate of the variable w
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w (s) = L−1 (s)
K∑

k=1

TkT �−1
k θk (s), (11.28)

which is just the mean of the posterior distribution 11.24.
Note that {Tk |1 ≤ k ≤ K } are unknownandneed to be estimated from the speaker-

specific acoustic features {xt (s)} using the expectation–maximization (EM) algo-
rithm to maximize the maximum likelihood (ML) training criterion [6]

Q (T1, . . . , TK ) = −1

2

∑
s,t,k

γtk (s)
[
log |L (s)| + (xt (s) − μk (s))T �−1

k (xt (s) − μk (s))
]
,

(11.29)
or equivalently

Q (T1, . . . , TK ) = −1

2

∑
s,k

[
γk (s) log |L (s)| + γk (s)Tr

{
�−1

k Tkw (s) wT (s) TT
k

}

−2Tr
{
�−1

k Tkw (s) θT
k (s)

}]
+ C, (11.30)

Taking the derivative of Eq. 11.30 with respect to Tk and setting it to 0 we get the
M-step

Tk = CkA−1
k , 1 ≤ k ≤ K (11.31)

where

Ck =
∑

s

θk (s) wT (s) , (11.32)

Ak =
∑

s

γk (s)
[
L−1 (s) + w (s) wT (s)

]
(11.33)

are computed in the E-step.
Although we discussed SaT, NaT, and DaT separately, these techniques can be

combined into a single network, in which the input has four segments: one for the
speech feature and the rest are for the speaker, noise, and device codes, respectively.
The speaker, noise, and device codes can be trained jointly and the learned codes can
be carried over to form different combination of conditions.
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11.5.3 Tensor

The speaker and speech subspaces can also be estimated and combined using three-
way connections (or tensors). In [41], several such architectures are proposed.
Figure11.6 shows one of such architectures called disjoint factorized DNN. In this
architecture, the speaker posterior probability p (s|xt ) is estimated from the acoustic
feature xt using a DNN. The class posterior probability p (yt = i |xt ) is estimated as

p (yt = i |xt ) =
∑

s

p (yt = i |s,xt ) p (s|xt )

=
∑

s

exp
(

sT Wi v
L−1
t

)
∑

j exp
(

sT W j v
L−1
t

) p (s|xt ) , (11.34)

where W ∈ R
NL×S×NL−1 is a tensor, S is the number of neurons in the speaker

identification DNN, NL−1 and NL are the number of neurons in the last hidden
layer and the output layer, respectively, of the senone classification DNN, and Wi ∈

Output Layer (often seones)

Speaker 
Estimation

Fig. 11.6 Illustration of a typical architecture of the disjoint factorized DNN model for speaker
adaptation
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R
S×NL−1 is a slice of the tensor. Unfortunately, the total number of parameters in

the tensor networks is typically very large compared to other techniques we have
discussed and thus is not practical for real-world applications.

11.6 Effectiveness of DNN Speaker Adaptation

As we have discussed in Chap. 9, DNN can extract features that are less sensitive to
the perturbations in the acoustic features than GMM and other shallow models. In
fact, it has been shown that much less improvement was observed with fDLR when
the network goes from shallow to deep [30]. It thus raises the question on how much
additional gain we can get from speaker adaptation on the CD-DNN-HMM systems.
In this section, we show, using experimental results from [29, 36, 43] that speaker
adaptation techniques are very important even to CD-DNN-HMM systems.

11.6.1 KL-Divergence Regularization Approach

The first set of experimental results, extracted from [43], was obtained on a short
message dictation (SMD) task. The baseline SI models were trained using 300h
voice search and SMD data. The evaluation was conducted on data from 9 speakers,
out of which 2 were used as the development set to determine the learning rate and
7 were used as the test set. The total number of test set words is 20,668.

The baseline SI CD-DNN-HMM system used 24 log-filter bank features with
up to second derivatives and a context window size of 11, forming a vector of 792-
dimension (72 x 11) input. On top of the input layer, there are 5 hidden layers
with 2,048-neurons each. The output layer has a dimension of 5,976. The DNN
system was trained using the senone alignments from the GMM–HMM system. The
baseline SI CD-DNN-HMM system achieved 23.4% WER on the 7-speaker test
set. To evaluate how the size of the adaptation set affects the result, the number of
adaptation utterances varies from 5 (32s) to 200 (22min).

Figures11.7a,b summarize the WER on the SMD dataset using supervised and
unsupervised KLD-Reg adaptation, respectively. From these figures, we can observe
that with the optimal regularization weights determined by the development set, we
get 30.3, 25.2, 18.6, 12.6, 8.8, and 5.6% relative WER reduction using supervised
adaptation, and 14.6, 11.7, 8.6, 5.8, 4.1, and 2.5%, using unsupervised adaptation,
respectively, with 200, 100, 50, 25, 10, and 5 utterances of adaptation data. These
figures also show that larger regularization weights should be used for smaller adap-
tation set and smaller regularization weights should be used for larger adaptation set,
although the error reductions are quite robust as long as the regularization weight is
within [0.125 0.5] on this task. Compared to the supervised adaptation, the unsuper-
vised setup can benefit from larger regularization weights. This is because the labels

http://dx.doi.org/10.1007/978-1-4471-5779-3_9
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Fig. 11.7 WERs on the SMD dataset using KLD regularized adaptation for different regularization
weights λ (numbers in parentheses). The dashed line is the SI DNN baseline. (Figure from Yu
et al. [43]). a Supervised adaptation. b unsupervised adaptation

in the unsupervised adaptation setup are less reliable and thus we should trust the
output from the SI model even more during the adaptation.

In [36], the SVD bottleneck adaptation technique described in Sect. 11.4.3 was
used to reduce both the size of the SIDNNand the footprint of the adapted parameters.
In the experiments conductedon the sameSMDtask, the full-rankDNNmodel,which
has 30M parameters, was first converted to the low-rank model by keeping only 40%
of total singular values. This low-rank model is refined and the accuracy of the final
model is the same as that achieved using the full-rank model. Table11.1 summarizes
the results obtained with SI models and with KLD regularized adaptation on the low-
rank SI model. The regularization weight λ is set to 0.5 in this set of experiments.
From the table, we can observe that even when the adaptation footprint is reduced
from 7.4M in the full low-rank DNN adaptation to 266K in the SVD bottleneck
adaptation we still can achieve over 18% relative error reduction using the KLD
regularized adaptation technique. Unpublished results on adapting the best SI DNN
model we can built confirmed this result.
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Table 11.1 Compare the full-rank adaptation and SVD bottleneck adaptation inWER on the SMD
task, all supervised with a KLD regularization weight 0.5

SI Low-Rank DNN Adapt with 5 Utterances Adapt with 100
Utterances

Full Model Adaptation
(7.4M)

25.12% (baseline) 24.30% (−3.2%) 20.51%
(−18.4%)

SVDBottleneckAdapta-
tion (266K)

25.12% (baseline) 24.23% (−3.5%) 19.95%
(−20.6%)

Relative WER reduction in parenthesis. (Table based on results summarized from Xue et al. [36])

11.6.2 Speaker-Aware Training

In [29], the i-vector based adaptation approachwas applied to theSwitchboard (SWB)
dataset [14, 15] described in Chap.6 where 300h of data was used to train the
DNN model. In their experiments, each frame is represented by a feature vector
of 13 perceptual linear prediction (PLP) cepstral coefficients which are mean- and
variance-normalized per conversation side. Every 9 consecutive cepstral frames are
spliced together and projected down to 40 dimensions using LDA, which is further
diagonalized by means of a global semi-tied covariance transform.

They first trained a GMM UBM model with 2,048 40-dimensional Gaussian
components with diagonal covariance using the maximum likelihood criteria. They
then built a GMM of the same size, adapted from the UBM, for each speaker. The i-
vector extractionmatricesT1, . . . , T2048 were initializedwith values drawn randomly
from the uniform distribution in [−1, 1] and were estimated with 10 iterations of EM
described in Eqs. (11.31)–(11.33). With these extraction matrices, they extracted M-
dimensional i-vectors for all the training and test speakers.

The DNN input features cover a temporal context of 11 frames. In other words,
the input layer has 40× 11+M (for M ={40, 100, 200}) neurons. All DNNs have 6
hidden layers with sigmoid activation functions: the first 5 with 2,048 units and the
last one with 256 units for parameter reduction and faster training. The output layer
has 9,300 softmax units that correspond to the context-dependent HMM states. The
decoding language model used is a 4gram LM with 4Mn-grams.

Table11.2 compares the SI DNN and the DNN adapted with the i-vector based
SaT inword error rate (WER) on theHUB5’00 andRT’03 test sets. From the table,we
can observe that no matter whether the cross-entropy or the sequence-discriminative
training criteria is used, the i-vector SaT adaptation can achieve on average over 10%
relative error reduction over the SI DNN.

In [37], Xue et al. reported results using the speaker-code-based approach on the
Switchboard dataset. They showed that by using 10 adaptation utterances to learn the
speaker code, a relative error rate reduction of 6.2% (16.2% → 15.2%) and 4.3%
(14.0% → 13.4%) can be achieved on the frame-level and sequence-discriminative
training baselines, respectively.

http://dx.doi.org/10.1007/978-1-4471-5779-3_6
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Table 11.2 Compare the SI DNN and the DNN adapted with the i-vector based speaker-aware
training in WER on HUB5’00 and RT’03 test sets

Training Model Hub5’00 RT’03

SWB FSH SWB

Cross Entropy SI 16.1% 18.9% 29.0%

i-vector SaT 13.9% (−13.7%) 16.7% (−11.6%) 25.8% (−11.0%)

Sequence SI 14.1% 16.9% 26.5%

i-vector SaT 12.4% (−12.1%) 15.0% (−11.2%) 24.0% (−9.4%)

Relative WER reduction in parenthesis. (Summarized from Saon et al. [29])
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Advanced Deep Models



Chapter 12
Representation Sharing and Transfer in Deep
Neural Networks

Abstract We have emphasized in the previous chapters that in deep neural networks
(DNNs) each hidden layer is a new representation of the raw input to the DNN. The
representation at higher layers is more abstract than that at lower layers. In this
chapter, we show that these feature representations can be shared and transferred
across related tasks through techniques such as multitask and transfer learning. We
will usemultilingual and crosslingual speech recognition as themain example, which
uses a shared-hidden-layer DNN architecture, to demonstrate these techniques.

12.1 Multitask and Transfer Learning

12.1.1 Multitask Learning

Multitask learning (MTL) [3] is a machine learning technique that aims at improving
the generalization performance of a learning task by jointly learning multiple-related
tasks. The key to the successful application ofMTL is that the tasks need to be related.
Here related does not mean the tasks are similar. Instead, it means at some level of
abstraction these tasks share part of the representation. If the tasks are indeed similar
learning them together can help transfer knowledge among tasks since it effectively
increases the amount of training data for each task. If the tasks are related yet not
similar, learning them together can help constrain the possible functional space of
each task and thus improve the generalization ability of each task. Multitask learning
is mostly useful when the training set size is small compared to the model size.

Since each hidden layer in a deep neural network (DNN) is a new representation
of the raw input to the DNN and the representation at higher layers is more abstract
than that at lower layers, DNN is well suited to support MTL. Figure12.1 illustrates
a generic architecture of MTL in DNN. In this figure, three related tasks are shown.
Note that these tasks process the raw input features independently at earlier process-
ing stages (or layers). Part of the features, represented by the green layers inside the
dotted rectangular box, however, are merged from and shared across all three tasks.
The shared features are forked again for further task-dependent processing at the top
of the network. Since each task has its own training criterion, a separate output layer
is devoted to each task.

© Springer-Verlag London 2015
D. Yu and L. Deng, Automatic Speech Recognition,
Signals and Communication Technology, DOI 10.1007/978-1-4471-5779-3_12

219



220 12 Representation Sharing and Transfer in Deep Neural Networks

...

...

...

... ... ...Task1 Output Task2 Output Task3 Output 

Task 1 Task 2 Task 3

...

...... ...
...
...

...

...
...
...

...

...

...

...
...
...

Fig. 12.1 A generic architecture of multitask learning in deep neural networks. Three related tasks
are shown in the figure. The green layers inside the dotted rectangular box are shared across all
tasks

This is a rather generic architecture. For a specific application, the decisions need
to make include whether the raw input features are the same for tasks involved (i.e.,
similar to the task1 and task2 pair or the task2 and task3 pair in the figure), how
many task-dependent layers are needed for each raw input feature before features
are merged and shared, whether all or part of the features are shared (e.g., in Fig. 12.1
only part of the features are shared), and whether additional task-dependent hidden
layers are needed for each task. These decisions are application specific and can
significantly affect the effectiveness of MTL.

12.1.2 Transfer Learning

Transfer learning [24] aims at developing a reasonably performed system for a new
task, domain, or distribution efficiently and effectively by retaining and leveraging
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the knowledge learned from one or more similar tasks, domains, or distributions.
Different from multitask learning which focuses on improving performance on all
or a primary task involved, transfer learning emphasizes on the performance of the
target task by transferring knowledge across tasks, domains, and distributions that
are similar but not the same.

Due to the more abstract and invariant features represented by the hidden layers,
DNNs are well suited for transfer learning. In transfer learning, the main design
questions are what and how to transfer. In the DNN framework, these questions are
translated to how to represent knowledge to be transferred in DNNs (e.g., at which
abstraction level) and how to leverage the knowledge from the other domains.

Transfer learning has great practical implications. In many real-world applica-
tions, due to the high cost of human manual labeling and/or environmental/societal
restrictions, it is not uncommon that sufficient matching training data are not avail-
able. In such cases, transfer learning between task domains would be very desirable.
Transfer learning has been successfully applied to many such machine learning tasks
(refer to [24] for a recent survey). In these applications, feature transfer, which is
very well suited in DNNs, is the main approach to transfer knowledge between tasks.

In the following sections, we will discuss how multitask and transfer learning can
be applied to attack speech recognition problems.We focus on three key applications:
multilingual and crosslingual speech recognition [11, 12, 16, 28, 33], multiobjective
training of DNNs for speech recognition [4, 21, 30], and robust speech recognition
exploiting audio-visual information [15].

12.2 Multilingual and Crosslingual Speech Recognition

In most traditional automatic speech recognition (ASR) systems, languages (and
dialects) are considered independently, and a separate acousticmodel (AM) is trained
for each language from scratch. This introduces several problems. First, training an
AM for a language from scratch requires a lot of manually labeled training data,
which not only costs a lot but also takes time. This also results in considerable
differences in quality between resource-rich and resource-scarce languages. This is
because only small models with low complexity can be estimated for the resource-
scarce languages. The requirement of having a large collection of labeled training data
is also an unavoidable bottleneck for languages with low traffic and new launches
where it is difficult to find large amounts of representative data. Second, training
an AM for each language independently increases the accumulated training time.
This is true especially for deep neural network (DNN)-based ASR systems since,
as we mentioned in Chap.7, training DNNs is substantially slower than training
Gaussian mixture models (GMMs) due to the number of parameters in the DNNs
and the backpropagation (BP) algorithm used. Third, building a separate AM for
each language prevents smooth recognition and increases the cost of recognizing the
mixed-lingual speech. To train accurate acoustic models efficiently and effectively
for a large number of languages, to reduce cost incurred in training the AMs, and

http://dx.doi.org/10.1007/978-1-4471-5779-3_7
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to support new usage scenarios where mixed-lingual ASR is crucial (e.g., English
words are frequently inserted inside Chinese phrases in Hong Kong), there is an
increasing interest in building multilingual ASR systems and reusing multilingual
resources.

Although resource constraint (in both labeled data and computational power) is the
very practical reason to look into the multilingual ASR problem, this is not the only
reason. By investigating and engineering such techniques, we may also improve
our understanding of the algorithms used and the relationship between different
languages. There have beenmuch research work on themultilingual and crosslingual
ASR in the literature (e.g., [20, 34]). In this section, we focus only on those that use
neural networks.

There can be many different architectures of multilingual ASR systems based
on the DNNs as we will discuss in the next several subsections. However, these
architectures share the same core idea: the hidden layers of a DNN can be consid-
ered as a cascade of feature extractors and only the output layer provides the direct
correspondence to the classes of interest as we have emphasized in Chap.9. These
feature extractors can be shared across many different languages, jointly trained with
data frommultiple languages, and transferred to new (and typically resource-scarce)
languages. By transferring the shared hidden layers to a new language, we can mit-
igate the requirement of having a significant amount of data to train large DNNs
from scratch since only the weights of the language-specific output layer needs to be
trained.

12.2.1 Tandem/Bottleneck-Based Crosslingual
Speech Recognition

Most early studies on using neural networks inmultilingual and crosslingual acoustic
modeling focused on tandem and bottleneck approaches [25, 27, 28, 32, 33] because
it is only after the publication of [7, 29] that the DNN-HMM hybrid system
has become an important alternative acoustic model for large vocabulary contin-
uous speech recognition (LVCSR). As we have described in Chap. 10, in the tan-
dem/bottleneck approaches, a neural network is trained to classify either monophone
states or tied triphone states. The neural network outputs or hidden layer excitations
are then used as discriminative features for a GMM-HMM acoustic model.

Since both the hidden and output layers of the neural network contains informa-
tion to classify phoneme states in a language and different languages share similar
phonetic phenomena, it is possible to use the tandem/bottleneck features extracted
from neural networks trained for one language (referred as source language) to be
used as features of a GMM-HMM system for recognizing another language (referred
as target language). Experiments show that these transferred features can improve
on a competitive target language baseline when the amount of transcribed data in the
target language is small.

http://dx.doi.org/10.1007/978-1-4471-5779-3_9
http://dx.doi.org/10.1007/978-1-4471-5779-3_10
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The neural network used to extract tandem/bottleneck features can be
multilingually trained [33] by using a different output layer (corresponding to
context-independent phones) for each language similar to that depicted in Fig. 12.2.
In addition, multiple neural networks can be trained each using different features,
e.g., one using spectral (perceptual linear predictive or PLP [13]) features and the
other using modulation (frequency domain linear prediction or FDLP [2]) features.
Features extracted from these neural networks can be combined to further improve
the recognition accuracy.

The tandem/bottleneck-based approaches aremainly used in the crosslingualASR
to improve the resource-scarce languages. They are seldom used in the multilingual
ASR. This is because even if the same neural network is used to extract the tan-
dem/bottleneck features, a completely different GMM-HMM system is often still
needed for each language. This restriction, however, may be removed if multiple
languages share the same set of phonemes (or context-dependent phone states) and
decision trees as is done in [20]. The shared phone setmay be determinedwith domain
knowledge, e.g., using the international phonetic alphabet (IPA) [1], or through data
driven approaches, e.g., by measuring the distance between phonemes and triphone
states of different languages [34].

12.2.2 Shared-Hidden-Layer Multilingual DNN

The multilingual and crosslingual ASR can be more easily implemented in the
CD-DNN-HMM framework. Figure12.2 depicts the proposed architecture used for
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Fig. 12.2 Architecture of the shared-hidden-layer multilingual DNN (A similar figure has been
shown in Huang et al. [16])
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multilingual ASR. This architecture is referred as shared-hidden-layer multilingual
DNN (SHL-MDNN) in [16] because the input and hidden layers are shared across
all the languages the SHL-MDNN can recognize in this architecture. The softmax
layers, however, are not shared. Instead, each language has its own softmax layer to
estimate the posterior probabilities of the senones (tied triphone states) specific to
that language. This same architecture was also independently proposed in [11, 12].

Note that the shared hidden layers in this architecture can be considered as a
universal feature transformation or a special universal front end. The input to the
SHL-MDNN covers a long contextual window of the acoustic feature (e.g.,MFCC or
Mel-scale log filter-bank) frames as in the single-language CD-DNN-HMMsystems.
However, since the shared hidden layers are to be used bymany languages, language-
specific transformations such asHLDAcannot be applied. Fortunately, this restriction
does not limit the performance of the SHL-MDNNbecause any linear transformation
can be subsumed by the DNN as described in Chap.9.

The SHL-MDNN depicted in Fig. 12.2 is a special case of multitask learning
[3] in which multiple tasks are learned in parallel with a shared representation.
Multitask learning may be beneficial for learning DNNs for several reasons. First, it
provides a representation bias in that local optima supported by all tasks are preferred.
Second, it can alleviate the overfitting problem since the shared hidden layers (feature
transformations) are nowmore reliably estimated with data frommultiple languages.
This is in particular helpful for resource-scarce tasks. Third, it helps to learn features
that are easier to learn in a parallel task. Fourth, it helps improvemodel generalization
since the model is now trained with noises from different datasets.

Although SHL-MDNNs can provide these benefits, we cannot achieve them if
the SHL-MDNN is not correctly trained. The key to the successful training of the
SHL-MDNN is to train the model for all the languages simultaneously. When batch
training algorithms, such as L-BFGS or the Hessian-free [22] algorithm, are used,
this is trivial since all the data will be used in each update of the model. However,
if the minibatch-based stochastic gradient descent (SGD) training algorithm is used,
it is desirable to include training data from all languages in each minibatch. This
can be efficiently accomplished by randomizing the training utterance list across the
languages before feeding it into the DNN training tool.

An alternative training procedure is proposed in [11]. In this procedure, all the
hidden layers are first pretrained using the unsupervised DBN-pretraining procedure
described in Chap.5. A language is then selected and a randomly initialized softmax
layer that is corresponding to the selected language is added. This softmax layer
and the whole SHL-MDNN is fine-tuned on the chosen language. After it is refined,
the softmax layer is replaced by another randomly initialized one corresponding to
the next language, and fine-tuned on that language. This process is repeated for all
the languages. A potential problem with this language-sequential training is that
it will lead to more biased estimates and underperforms the simultaneous training
procedure.

The SHL-MDNN can be pretrained using either generative or discriminative pre-
training techniques described in Chap.5. The fine-tuning of the SHL-MDNN can be
carried out using the conventional backpropagation (BP) algorithm. However, since

http://dx.doi.org/10.1007/978-1-4471-5779-3_9
http://dx.doi.org/10.1007/978-1-4471-5779-3_5
http://dx.doi.org/10.1007/978-1-4471-5779-3_5
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a different softmax layer is used for each different language, the algorithm needs to
be adjusted slightly. When a training sample is presented to the SHL-MDNN trainer,
only the shared hidden layers and the language-specific softmax layer are updated.
Other softmax layers are kept intact.

After being trained, the SHL-MDNN can be used to recognize speech of any
languageused in the trainingprocess. Sincemultiple languages canbe simultaneously
decodedwith its unifiedDNNstructure, the SHL-MDNNmakesmultilingual LVCSR
easy and efficient. Supporting a new language in SHL-MDNN is trivial as shown in
Fig. 12.3. It only involves adding a new softmax layer in the existing SHL-MDNN
and training the newly added softmax layer on the new language.

By sharing the hidden layers in the SHL-MDNN and by using the joint training
strategy, we can improve the recognition accuracy of all the languages decode-able
by the SHL-MDNN over the monolingual DNNs trained using data from individual
languages only. Experiments have been conducted on a Microsoft internal speech
recognition task to evaluate the SHL-MDNN [16]. The SHL-MDNN used in the
experiment has 5 hidden layers, each with 2,048 neurons. The input to the DNN is
11 (5-1-5) frames of the 13-dimMFCC feature with its derivatives and accelerations.
It is trained with 138-h French (FRA), 195-h German (DEU), 63-h Spanish (ESP),
and 63-h Italian (ITA) speech data. For each language, the output layer has 1.8k
senones determinedby theGMM-HMMsystem trainedwith themaximum likelihood
estimation (MLE) on the same training set. The SHL-MDNN was initialized using
the unsupervised DBN-pretraining procedure, and then refined with BP using senone
labels derived from the MLEmodel alignment. The trained DNNs are plugged in the
CD-DNN-HMM framework described in Chap.6.

Table12.1 compares the word error rate (WER) obtained on the language-specific
test sets using the monolingual DNN, trained using only the data from that language,
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Fig. 12.3 Support a fifth language in the SHL-MDNN trained for four languages
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Table 12.1 Compare monolingual DNN and shared-hidden-layer multilingual DNN in WER

FRA DEU ESP ITA

Test set size (words) 40k 37k 18k 31k

Monolingual DNN WER 28.1% 24.0% 30.6% 24.3%

SHL-MDNN WER 27.1% (−3.6%) 22.7% (−5.4%) 29.4% (−3.9%) 23.5% (−3.3%)

Relative WER reduction over the monolingual DNN is in parentheses (Summarized from Huang
et al. [16])

and the SHL-MDNN, whose hidden layers are trained using data from all four
languages. From the table, we can observe that the SHL-MDNN outperforms the
monolingual DNN with a 3–5% relative WER reduction across all the languages.
We believe the gain obtained by the SHL-MDNN attributes to the cross-language
knowledge. It is encouraging that even for FRA and DEU, which have more than
100h of training data, SHL-MDNN can still provide improvements.

12.2.3 Crosslingual Model Transfer

The shared hidden layers extracted from the multilingual DNN can be considered as
an intelligent feature extractionmodule jointly trainedwith data frommultiple source
languages. As such they carry rich information to distinguish phonetic classes in
multiple languages and can be carried over to distinguish phonemes in new languages.

The procedure of crosslingual model transfer is simple. We just extract the shared
hidden layers from the SHL-MDNN and add a new softmax layer on top of it as
shown in Fig. 12.4. The softmax layer’s output nodes correspond to the senones in
the target language. We then fix the hidden layers and only train the softmax layer
using training data from the target language. If enough training data are available,
additional gains may be achieved by further tuning the entire network.

Toevaluate the effectiveness of crosslingualmodel transfer, a series of experiments
have been conducted in [16] and are used here. In these experiments, two different
languages are used as the target languages: American English (ENU), which is pho-
netically close to the European languages used to train the SHL-MDNN described
in Sect. 12.2.2, and Mandarin Chinese (CHN), which is far away from the European
languages. The ENU test set consists of 2,286 utterances (or 18k words) and the
CHN test set has 10,510 utterances (or 40k characters).

12.2.3.1 Hidden Layers Are Transferable

The first question to ask is whether the hidden layers are indeed transferable to other
languages. To answer this question empirically it is assumed that a 9-h ENU train-
ing data (55,737 utterances) is available to build an ENU ASR system. Table12.2
summarizes the experimental results. The baseline DNN is trained solely using the
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Fig. 12.4 Crosslingual transfer. The hidden layers are borrowed from the multilingual DNN while
the softmax layer needs to be trained with data from the target language

Table 12.2 Compare WER on the ENU test set with and without using hidden layers (HLs) trans-
ferred from the FRA DNN

Setup WER (%)

Baseline DNN (trained with 9-h US English data only) 30.9

French trained hidden layers + refine all layers 30.6

French trained hidden layers + refine Softmax layer only 27.3

Shared-hidden layers trained with four languages + refine Softmax layer only 25.3

(Summarized from Huang et al. [16])

9-h ENU training set. With this approach, a WER of 30.9% is achieved on the ENU
test set. An alternative approach is to leverage the hidden layers (feature transfor-
mation) learned from other languages. In this experiment, a monolingual DNN is
trained with 138h of FRA training data. The hidden layers of this DNN are then
extracted and reused in the ENU DNN. If the hidden layers are fixed and only the
ENU-specific softmax layer is trained using the 9-h ENU training data, a 2.6%WER
reduction (30.9%→27.3%) over the baseline DNN can be obtained. If the whole
FRA DNN is retrained using the 9-h ENU data, a WER of 30.6%, which is only
slightly better than the 30.9% baseline WER is obtained. These results indicate that
the feature transformation represented by the hidden layers in the FRA DNN can be
effectively transferred to recognize the ENU speech.

In addition, if the shared hidden layers extracted from the SHL-MDNN described
in Sect. 12.2.2 are extracted and used in the ENU DNN an additional absolute 2.0%
WER reduction (27.3%→25.3%) can be obtained. This indicates that the hidden
layers extracted from the SHL-MDNN are more effective than that extracted from
the FRA DNN when transferred to build the ENU DNN. Overall, by using the
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Table 12.3 Compare the effect of target language training set size in WER when hidden layers are
transferred from the SHL-MDNN

US English training data 3-h (%) 9-h (%) 36-h (%)

Baseline DNN (trained with English data only) 38.9 30.9 23.0

SHL-MDNN + refine Softmax layer only 28.0 25.3 22.4

SHL-MDNN + refine all layers 33.4 28.9 21.6

Best case relative WER reduction (%) 28.0 18.1 6.1

(Summarized from Huang et al. [16])

crosslingualmodel transfer, a 4.6% (or 18.1% relative)WER reductionwas obtained
over the baseline ENU DNN.

12.2.3.2 Size of Target Language Training Data Matters

The second question to ask is how the size of target language training data affect the
performance of the multilingual DNN crosslingual model transfer. To answer this
question, experiments were conducted by Huang et al. assuming 3, 9, and 36h of
English (target language) training data are available. Table12.3 from [16] summa-
rizes the results. From the table, we can observe that DNNs that exploit transferred
hidden layers consistently outperform the baseline DNNs that do not use crosslingual
model transfer. We can also observe that when different sizes of target languages are
available, the best learning strategy is different. When less than 10h of target lan-
guage training data are available, the best strategy is to only train a new softmax layer.
By doing so, we observe 28.0 and 18.1% relative WER reduction over the baseline
DNNs, when 3 and 9h of ENU speech data are available, respectively. However,
when the amount of training data is large enough, further adapting the whole DNN
can provide additional error reduction. For example, when 36h of ENU speech data
are available, we observe additional 0.8% WER reduction (22.4%→21.6%) by
adapting all layers.

12.2.3.3 Transferring from European Languages to Mandarin
Chinese Is Effective

The third question to ask is whether the effectiveness of the crosslingual model
transfer approach is sensitive to the language similarities between the source and the
target languages. To answer this question, Huang et al. [16] used Mandarin Chinese
(CHN) as the target language, which differs significantly to the European languages
used to train the SHL-MDNN. Table12.4 from [16] lists the character error rates
(CERs) using both the baseline and the multilingual-boosted DNN when the size
of Chinese training data varies. To achieve the results reported in this table, only
the softmax layers were trained when less than 9h of CHN data are available and
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Table 12.4 Effectiveness of crosslingual model transfer on CHN measured in character error rate
(CER) reduction

Chinese training set 3-h (%) 9-h (%) 36-h (%) 139-h (%)

Baseline DNN (trained with Chinese data only) 45.1 40.3 31.7 29.0

SHL-MDNN model transfer 35.6 33.9 28.4 26.6

(−21.1) (−15.9) (−10.4) (−8.3)

Relative CER reduction in parenthesis (Summarized from Huang et al. [16])

all layers are further refined when more than 10h of CHN data are available. We
can see that in all cases CER reduction is observed by using the transferred hidden
layers. Even if 139h of CHN training data are available, we can still benefit from
the SHL-MDNN with 8.3% relative CER reduction. Moreover, using only 36h of
CHN data, we can achieve 28.4% CER on the test set by transferring the SHLs
from the SHL-MDNN. This is better than the 29.0% CER obtained with the baseline
DNN trained using the 139h of CHN training data, a save of over 100h of CHN
transcription effort.

12.2.3.4 Using Label Information Is Important

The fourth question to ask is whether the features extracted through unsupervised
learning can perform classification tasks equally well as that through supervised
training. It can provide significant advantage if the answer is true since it is much
easier to obtain untranscribed speech data than transcribed ones for model training.
In this subsection, we show that the label information is important for effectively
learning the shared representation from the multilingual data. Table12.5, based on
results from [16], compares the systems with and without using the label information
when training the shared hidden layers. We see from Table12.5 that while there is
a small gain by using pretrained only multilingual DNN and adapting the whole
network with ENU data (30.9%→30.2%), the gain is significantly smaller than
that obtainedwhen label information is used (30.9%→25.3%). These results clearly
indicate that labeled data are muchmore valuable than unlabeled data and using label
information is critical in learning effective features from multilingual data.

Table 12.5 Compare features learned from multilingual data with and without using label
information on ENU data

SHL-MDNN WER (%)

trained with label?

Baseline DNN (trained with 9-h US English data only) – 30.9

SHL-MDNN + refine softmax layer only No 38.7

SHL-MDNN + refine all layers Yes 30.2

SHL-MDNN + refine softmax layer only Yes 25.3

(Summarized from Huang et al. [16])
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12.3 Multiobjective Training of Deep Neural Networks
for Speech Recognition

Since multitask learning can potentially improve the generalization ability of all the
tasks involved, it has also been used in more general multiobjective training of DNNs
for speech recognition. In this section, we sample three such applications. Note that
in all these three tasks, the training set is small.

12.3.1 Robust Speech Recognition with Multitask Learning

In [21], Lu et al. proposed to improve the robustness of the noisy digit recognition
task by using multitask learning. They used a single-hidden layer recurrent neural
network as shown in Fig. 12.5 for digit classification. Different from previous work,
they trained the neural network to simultaneously classify the digits, enhance the
noisy speech, and recognize the gender of the speaker. In their experiments, 1,000
examples were chosen for training and 110 examples were used to control the stop-
ping condition in training. Tests were performed on the isolated digit samples in
Aurora test set A. They observed that by including both the enhancement and gen-
der recognition tasks they can reduce error rate by close to 50% relatively over the
system trained to do digit classification alone.

12.3.2 Improved Phone Recognition with Multitask Learning

In [30], Seltzer and Droppo proposed to improve the recognition accuracy of the
DNN-HMMsystem on the TIMIT phone recognition task [10] by adding a secondary
task to the training of DNNs. They adopted a standard DNN used for phone recogni-
tion [14], which contains four 2,048-neuron hidden layers and uses 183 monophone
states as the DNN training target, and investigated three different secondary tasks:

Fig. 12.5 Improve noisy
digit recognition by training
the neural network to
simultaneously classify the
digits, enhance the noisy
speech, and recognize the
gender of the speaker

...

... ... ...
Digit Classification Enhancement Gender Recognition

...
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• Phone Label Task: They created the phone label for each training example by
mapping the state symbol up to its corresponding phone label and used this phone
label as the target of the secondary task. The intuition is that by doing so the DNN
can know which states belong to the same phone and so do not need to separate
these states too aggressively.

• State Context Task: Instead of classifying just the state label of the central frame,
they added a secondary task to classify the previous and next frames’ acoustic
state labels. This secondary objective function measures the ability of the model
to predict the current acoustic model state as well as the previous and next acoustic
model states. The idea is by giving the model information about the time-evolution
of the acoustic state the system can distinguish the states at the phone boundary
from those in the middle.

• Phone Context Task: Since the primary task is to recognize the monophone state
the phone context information such as that in the triphone state models is absent.
To compensate for the missing of the context information, they added a secondary
task to recognize the left and right context phone labels.

They conducted a series of experiments on the TIMIT corpus [10], which contains
continuous speech from 630 native English speakers, with eight usable recorded
utterances for each speaker. The core test set consists of twenty-four speakerswho are
not included in the training set consisted of 462 speakers. Recognitionwas performed
using a set of 61 phoneme labels, each of which has three states, for a total of 183
possible monophone states. The secondary tasks were only used during the training
and discarded during the testing. After decoding, the 61 phone labels were collapsed
into a set of 39 phone classes for scoring, following [18].

Their results indicate that adding phone label classification as the secondary task
does not affect the primary task’s result. This is understandable since the phone label
does not provide any additional information than the state label already used in the
primary task. Using the phone context classification as the secondary task gave the
highest phonetic error rate (PER) reduction (21.63 → 20.25%) on the core test set,
and surpassing the best performance in the literature for a DNN that uses a standard
feed-forward network architecture. As a conclusion, if suitable secondary tasks are
chosen, the network can leverage the common structure in the different tasks to learn
a model with better generalization capability.

12.3.3 Recognizing both Phonemes and Graphemes

In [4], Chen et al. proposed to improve the generalization performance of triphone
models by jointly training DNNs with trigrapheme models of the same language
under the MTL framework for low-resource languages. Triphone modeling and
trigrapheme modeling are obviously related learning tasks for the same language. It
is reasonable to believe that the features used to classify phonemes and graphemes
can be shared.
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In [4], triphone acoustic modeling was picked as the primary task and trigrapheme
acoustic modeling as the secondary task. The architecture of their system is very
similar to that used in the multilingual speech recognition, except that the two output
layers are trained to model the posterior probabilities of triphone tied states and
trigrapheme tied states respectively for a given input acoustic frame. All the hidden
layers are shared across two tasks. Chen et al. evaluated this MTL system on three
low-resource South African languages, namely Afrikaans, Sesotho, and Swati, each
with about 1h of training speech. They found that the MTL-DNN outperformed
the single task learning (STL) DNN with a 5–13% relative error reduction. More
interestingly, the MTL-DNN even outperforms the integration of the triphone and
trigrapheme STL DNNs by ROVER [9] with a 0.5–4.2% relative error reduction.

12.4 Robust Speech Recognition Exploiting Audio-Visual
Information

In some tasks, the goal is to improve the primary task’s (e.g., speech recognition)
accuracy by exploiting other sources of information (e.g., visual information). Such
problems can be cast as a multitask learning problem if the tasks for which the
additional information is designed are also optimized at the same time. In most
cases, however, the secondary tasks are not optimized since the performance gain is
mainly from using the additional information instead of multitasking learning. The
key design question in such applications is how to exploit that additional information.

The mixed-bandwidth speech recognition we discussed in Chap. 9 is an example
of such applications. As depicted in Fig. 9.12, there are two sources of informa-
tion: output from the lower filter-banks and that from the higher filter-banks. Lower
recognition accuracy was observed if only the information from the lower filter-
banks is available, for example, when the signal is narrowband. If both sources of
information are available as in the wideband signal case, additional error rate reduc-
tion can be achieved. Not only that, by training the DNNwithmixed-bandwidth data,
the performance on both the narrowband and wideband speech can be improved due
to regularization imposed by the DNN architecture and the combination of the train-
ing data.

In [15], Huang and Kingsbury proposed a similar architecture. Their goal, how-
ever, is to improve the robust speech recognition accuracy by exploiting audio-visual
information. The architecture of their system is illustrated in Fig. 12.6, which is a
special case of Fig. 12.1.

Their work is motivated by the bimodality (auditory and visual) of human speech
perception [31]. Because visual information is separate from the audio and invariant
to acoustic noise, it can potentially improve over audio-only speech recognition in
both clean and noisy conditions [5, 6, 8, 17, 19, 23, 26]. It is not surprising that the
most successful systems extract visual features from the facial region of interest. In
[15], Huang and Kingsbury investigated the use of DNNs to improve audio-visual

http://dx.doi.org/10.1007/978-1-4471-5779-3_9
http://dx.doi.org/10.1007/978-1-4471-5779-3_9
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Fig. 12.6 A DNN
architecture for improving
noisy speech recognition by
exploiting audio-visual
information. The green
hidden layers in the dotted
rectangular box are shared by
two modalities
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speech recognition with a focus on using the visual modality to supplement the
audio. They investigated two techniques to achieve this goal. The first technique
fuses the decisions made by two single-modality DNNs, one for audio and one
for visual features. The second technique fuses the features at a mid-level hidden
layer as shown in Fig. 12.6. On a continuously spoken digit recognition task, their
experiments show that these methods can reduce word error rate by as much as 21%
relative over a baseline multistream audio-visual GMM/HMM system.
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Chapter 13
Recurrent Neural Networks
and Related Models

Abstract A recurrent neural network (RNN) is a class of neural network models
where many connections among its neurons form a directed cycle. This gives rise
to the structure of internal states or memory in the RNN, endowing it with the
dynamic temporal behavior not exhibited by the DNN discussed in earlier chap-
ters. In this chapter, we first present the state-space formulation of the basic RNN
as a nonlinear dynamical system, where the recurrent matrix governing the system
dynamics is largely unstructured. For such basic RNNs, we describe two algorithms
for learning their parameters in some detail: (1) the most popular algorithm of back-
propagation through time (BPTT); and (2) a more rigorous, primal-dual optimization
technique, where constraints on the RNN’s recurrent matrix are imposed to guaran-
tee stability during RNN learning. Going beyond basic RNNs, we further study an
advanced version of the RNN, which exploits the structure called long-short-term
memory (LSTM), and analyzes its strengths over the basic RNN both in terms of
model construction and of practical applications including some latest speech recog-
nition results. Finally, we analyze the RNN as a bottom-up, discriminative, dynamic
system model against the top-down, generative counterpart of dynamic system as
discussed in Chap. 4. The analysis and discussion lead to potentially more effective
and advanced RNN-like architectures and learning paradigm where the strengths of
discriminative and generative modeling are integrated while their respective weak-
nesses are overcome.

13.1 Introduction

As discussed in previous chapters, for many years and until the recent rise of
deep learning technology as we reviewed in the several preceding chapters, auto-
matic speech recognition (ASR) technology had been dominated by a “shallow”
architecture-hidden Markov models (HMMs) with each state characterized by a
Gaussian mixture model (GMM), which we covered in some detail in Chaps. 2
and 3. While significant technological successes had been achieved using complex
and carefully engineered variants of GMM-HMMs and acoustic features suitable for
them, researchers had for long anticipated that the next generation of ASR would
require solutions to many new technical challenges under diversified deployment
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environments and that overcoming these challenges would likely require deep archi-
tectures that can at least functionally emulate the human speech recognition system
known to have dynamic and hierarchical structure in both speech production and
speech perception [18, 29, 35, 94]. An attempt to incorporate a primitive level of
understanding of this deep speech structure, initiated at the 2009 NIPSWorkshop on
Deep Learning for Speech Recognition and Related Applications [24], has helped
create an impetus in the ASR community to pursue a deep representation learning
approach based on the deep neural network (DNN) architecture, which was pio-
neered by the machine learning community only a few years earlier [51, 52] but
rapidly evolved into the new state of the art in speech recognition with industry-wide
adoption; e.g., [12, 13, 23, 24, 26, 47, 50, 60, 75, 84–87, 91, 92, 100, 101, 108].

In the meantime, however, it has been realized by many that the DNN-HMM
approach has not modeled speech dynamics properly. This relates to the same type
of limitations as we analyzed in Chap. 3 on the topic of HMM where several vari-
ants of the HMM were discussed aiming to overcome such limitations. The deep
and temporally recurrent neural network (RNN), which is the focus of this chapter,
has been developed in the past few years by deep learning and ASR researchers to
overcome the dynamic-modeling challenge; e.g., [10, 21, 43–46, 66, 78, 88, 89,
96, 99]. In the RNN, the internal representation of dynamic speech features is dis-
criminatively formed by feeding the low-level acoustic features into the hidden layer
together with the recurrent hidden features from the past history. In contrast, there
is no internal representation of speech dynamics in the DNN-HMM. The RNN is
a class of neural network models where connections among many of its units form
a directed cycle, hence the term recurrent. Such a cycle or recurrence is associated
with the time-delay operation. The use of time-delayed recurrence over the temporal
dimension gives rise to the memory structure, expressed as internal states, in the
RNN, permitting it to exhibit the type of dynamic temporal behavior not exhibited
by the DNN and DNN-HMM discussed in previous chapters.

Evenwithout stackingRNNsoneon topof another as carried out in [45, 46, 88, 89]
or feeding DNN features into RNNs as explored in [10, 21], an RNN itself is a deep
model since temporal unfolding of the RNN creates as many layers in the network as
the length of the input speech utterance. Recent progress on speech recognition has
seen excellent speech recognition accuracy achieved by RNNs, including the long-
short-term memory (LSTM) version of the RNN which started in as early as 1997
by neural network researchers [39, 40, 44, 45, 53, 103]. One focus of this chapter
is to present the background and mathematical formulation of the RNN (Sect. 13.2),
as well as the learning methods including the most popular backpropagation through
time (BPTT) technique (Sect. 13.3).

The use of RNNs or related neural predictive models for speech recognition dates
back to late 1980s and early 1990s; e.g., [22, 82, 102], which achieved relatively
low recognition accuracy. Since deep learning became popular in recent years, much
more research has been devoted to the RNN, including the applications to both
speech [45, 46, 88, 89] and languages [11, 67–73], and its stacked versions, also
called deep RNNs [45, 46, 48, 77, 88]. Most work on RNNs made use of the
method of BPTT to train their parameters, and empirical tricks need to be exploited

http://dx.doi.org/10.1007/978-1-4471-5779-3_3


13.1 Introduction 239

(e.g., truncate gradients when they become too large [69, 70]) in order to make the
training effective. It is not until recently that careful analysis wasmade to fully under-
stand the source of difficulties in learning RNNs and somewhat more principled, but
still rather heuristic, solutions were developed. For example, in [3, 6, 78] strategies
of gradient norm clipping was proposed to deal with the gradient exploding problem
during BPTT training. There are other solutions offered to improve learning meth-
ods for the RNN; e.g., [10, 56]. The method described in [10] is based on more
principled optimization techniques than most other methods, and will be reviewed
in Sect. 13.4. Further, the LSTM version of the RNN has recently been shown to
perform extremely well in both small- and large-scale ASR, and its structure is well
motivated. We will devote Sect. 13.5 to this topic.

It is important to note that before the recent rise of deep learning for speech
modeling and recognition, a number of earlier attempts had been made, which we
briefly discussed in Sect. 3.7 of Chap. 3 on HMM variants, to develop computational
architectures that are “deeper” than the conventional GMM-HMM architecture. One
prominent class of such models are hidden dynamic models where the internal rep-
resentation of dynamic speech features is generated probabilistically from the higher
levels in the overall deep speech model hierarchy [9, 15, 17, 30, 34, 62, 80, 97, 105,
107]. Despite separate developments of the RNNs and of the hidden dynamic or tra-
jectory models, they share a very similar motivation-representing aspects of dynamic
structure in human speech. Nevertheless, a number of different ways in which these
two types of deep dynamic models are constructed endow them with distinct pros
and cons. Careful analysis of the contrast between these two model types and of the
similarity to each other will help provide insights into the strategies for developing
new types of deep dynamic models with the hidden representations of speech fea-
tures superior to both existing RNNs and hidden dynamic models. We will devote
Sect. 13.6 of this chapter to a contrastive analysis between (discriminative) RNNs
and (generative) hidden dynamic models. In this multifaceted analysis, we will focus
mainly on the most prominent contrasts between the two types of dynamic models
in terms of the opposing top-down versus bottom-up information flow, and in terms
of the opposing local versus distributed representations adopted by the latent vectors
in these two types of models.

13.2 State-Space Formulation of the Basic Recurrent
Neural Network

An RNN is fundamentally different from the feed-forward DNN in that the RNN
operates not only based on inputs, as for the DNN, but also on internal states. The
internal states encode the past information in the temporal sequence that has already
been processed by the RNN. In this sense, the RNN is a dynamic system, more
general than the DNN which performs static input–output transformation. The use
of the state space in the RNN enables its representation and learning of sequentially
extended dependencies over a long time span, at least in principle.

http://dx.doi.org/10.1007/978-1-4471-5779-3_3
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Let us now formulate the simple one-hidden-layerRNN in termsof the (noise-free)
nonlinear state-space model commonly used in signal processing. This formulation
allows us to later compare the RNN with the same state-space formulation of non-
linear dynamic systems used as generative models for speech acoustics. The contrast
between the discriminative RNN and the use of the same mathematical model in the
generative model will be made to shed light onto why one approach works better
than another and how a combination of the two would be desirable.

At each time point t, let xt be the K × 1 vector of inputs, ht be the N × 1 vector of
hidden state values, and yt be the L×1 vector of outputs, the simple one-hidden-layer
RNN can be described as

ht = f (Wxhxt + Whhht−1) (13.1)

yt = g(Whyht), (13.2)

where Why is the L × N matrix of weights connecting the N hidden units to the
L outputs, Wxh is the N × K matrix of weights connecting the K inputs to the N
hidden units, and Whh is the N × N matrix of weights connecting the N hidden units
from time t − 1 to time t, ut = Wxhxt + Whhht−1 is the N × 1 vector of hidden
layer potentials, vt = Whyht is the L × 1 vector of output layer potentials, f (ut) is
the hidden layer activation function, and g(vt) is the output layer activation func-
tion. Typical hidden layer activation functions are sigmoid, tanh, and rectified linear
units while the typical output layer activation functions are linear and softmax func-
tions. Equations 13.1 and 13.2 are often called the observation and state equations,
respectively.

Note that outputs from previous time frames can also be used to update the state
vector, in which case the state equation becomes

ht = f (Wxhxt + Whhht−1 + Wyhyt−1), (13.3)

where Wyh denotes the weight matrix connecting from output layer to the hidden
layer. For simplicity andwithout loss of generality, we only consider the case without
output feedback in this chapter.

13.3 The Backpropagation-Through-Time Learning
Algorithm

The standard BPTTmethod, which was well explained in the tutorial material [7, 56]
and in the original paper [83], for learning the weight matrices of an RNN unfolds
the network in time and propagates error signals backwards through time. It is an
extension of the classic backpropagation algorithm for feed-forward networks, where
the stacked hidden layers for the same training frame, t, are replaced by the T same
single hidden layers across time, t = 1, 2, . . . , T .
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Referring to Eqs. 13.1 and 13.2, we denote ht(j) the jth hidden unit where j =
1, 2, . . . , N , why(i, j) as the weight connecting the jth hidden unit to the ith output
unit for i = 1, 2, . . . , L and j = 1, 2, . . . , N .

13.3.1 Objective Function for Minimization

As for the classic backpropagation, we begin by defining the cost function (or training
criterion). In this section, we use the sum-square error

E = c
T∑

t=1

‖lt − yt‖2 = c
T∑

t=1

L∑
j=1

(lt(j) − yt(j))
2 (13.4)

between the actual output, yt , and the target vector, lt , over all time frames as the
cost function, where lt(j) and yt(j) are the jth units in the target and output vectors,
respectively, and c = 0.5 is a conveniently chosen scale factor.

We seek to minimize this cost with respect to the weights using the gradient
descent algorithm. For a specific weight, w, in the RNN, the update rule for gradient
descent is

wnew = w − γ
∂E

∂w
, (13.5)

where γ is the learning rate. To compute the gradient, we define the error terms

δ
y
t (j) = − ∂E

∂vt(j)
, δh

t (j) = − ∂E

∂ut(j)
(13.6)

as the gradient of the cost with respect to the unit’s input potential. The error terms
and gradients can be recursively computed as we will explain next.

13.3.2 Recursive Computation of Error Terms

In the error propagation part of the BPTT algorithm, all RNN weights are duplicated
spatially for an arbitrary number of time steps. That is, they are tied over time.
Therefore, the standard backpropagation algorithm for feed-forward neural networks
needs to be modified by incorporating this tying constraint.

At the final time frame t = T , we can calculate the error terms at the output as

δ
y
T (j) = − ∂E

∂yT (j)

∂yT (j)

∂vT (j)
= (lT (j) − yT (j))g

′
(vT (j)) for j = 1, 2, . . . , L

or δ
y
T = (lT − yT ) • g

′
(vT ), (13.7)

and that at the hidden layer as
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δh
T (j) = −

(
L∑

i=1

∂E

∂vT (i)

∂vT (i)

∂hT (j)

∂hT (j)

∂uT (j)

)
=

L∑
i=1

δ
y
T (i)why(i, j)f

′
(uT (j))

for j = 1, 2, . . . , N

or δh
T = WT

hyδ
y
T • f

′
(uT ) (13.8)

where • is the element-wise multiplication operator.
For all other time frames, t = T − 1, T − 2, . . . , 1, we can compute the error

terms as

δ
y
t (j) = (lt(j) − yt(j))g

′
(vt(j)) for j = 1, 2, . . . , L

or δ
y
t = (lt − yt) • g

′
(vt) (13.9)

for the output units and

δh
t (j) = −

[
N∑

i=1

∂E

∂ut+1(i)

∂ut+1(i)

∂ht(j)
+

L∑
i=1

∂E

∂vt(i)

∂vt(i)

∂ht(j)

]
∂ht(j)

∂ut(j)

=
[

N∑
i=1

δh
t+1(i)whh(i, j) +

L∑
i=1

δ
y
t (i)why(i, j)

]
f

′
(ut(j))

for j = 1, 2, . . . , N

or δh
t =

[
WT

hhδ
h
t+1 + WT

hyδ
y
t

]
• f

′
(ut) (13.10)

for the hidden units, recursively, where the error term δ
y
t is propagated back from the

output layer at time frame t, and δh
t+1 is propagated back from the hidden layer at

time frame t + 1.

13.3.3 Update of RNN Weights

Given all the error terms and gradients computed above, we can easily update the
weights. For the output weight matrices, we have

wnew
hy (i, j) = why(i, j) − γ

T∑
t=1

∂E

∂vt(i)

∂vt(i)

∂why(i, j)
= why(i, j) − γ

T∑
t=1

δ
y
t (i)ht(j)

or Wnew
hy = Why + γ

T∑
t=1

δt
yhT

t . (13.11)

For the input weight matrices, we get
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wnew
xh (i, j) = wxh(i, j) − γ

T∑
t=1

∂E

∂ut(i)

∂ut(i)

∂wxh(i, j)
= wxh(i, j) − γ

T∑
t=1

δh
t (i)xt(j)

or Wnew
xh = Wxh + γ

T∑
t=1

δt
hxT

t . (13.12)

For the recurrent weight matrices, we have

wnew
hh (i, j) = whh(i, j) − γ

T∑
t=1

∂E

∂ut(i)

∂ut(i)

∂whh(i, j)

= whh(i, j) − γ

T∑
t=1

δh
t (i)ht−1(j)

or Wnew
hh = Whh + γ

T∑
t=1

δt
hhT

t−1. (13.13)

Note that different from the BP algorithm used in the DNN system, here the
gradients are summed over all the time frames since the same weight matrices are
used across time. Algorithm 13.1 summarizes the BPTT algorithm for the single-
hidden-layer RNN described above.

Algorithm 13.1 The Backpropagation Through Time Algorithm for the Single-
Hidden-Layer RNN with the Sum of Squared Error Cost Function
1: procedure BPTT({xt, It} 1 ≤ t ≤ T )

� xt is the input feature sequence
� It is the label sequence

� forward computation
2: for t ← 1; t ≤ T; t ← t + 1 do
3: ut ← Wxhxt + Whhht−1
4: ht ← f (ut)

5: vt ← Whyht
6: yt ← g(vt)

7: end for
� backpropagation through time

8: δ
y
T ← (lT − yT ) • g

′
(vT ) � •: element-wise multiplication

9: δh
T ← WT

hyδ
y
T • f

′
(uT )

10: for t ← T − 1; t ≥ 1T; t ← t − 1 do
11: δ

y
t ← (lt − yt) • g

′
(vt)

12: δh
t ←

[
WT

hhδ
h
t+1 + WT

hyδ
y
t

]
• f

′
(ut) � propagate from δ

y
t and δh

t+1

13: end for
� model update

14: Why ← Why + γ
∑T

t=1 δt
yhT

t

15: Whh ← Whh + γ
∑T

t=1 δt
hhT

t−1
16: end procedure
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The computational complexity of the BPTT described above can be shown to be
O(M2) per time step where M = LN + NK + N2 is the total number of weight
parameters that need to be learned. Compared to the classic feed-forward backprop-
agation, BPTT converges slower due to dependencies between frames, and is more
likely to converge to a poor local optimum due to exploding and vanishing gradients
[78, 96] and utterance-level (instead of frame-level) randomization. It is far from
trivial to achieve good results without much experimentation and tuning. The train-
ing speed can be improved if we truncate the past history to no more than the last
p time steps.

13.4 A Primal-Dual Technique for Learning Recurrent
Neural Networks

13.4.1 Difficulties in Learning RNNs

It is well known that learning RNNs is difficult partly because of the exploding
and vanishing gradient problems, as analyzed in [78]. A sufficient condition for the
vanishing gradient problem to occur is

‖Whh‖ < d (13.14)

where d = 4 for sigmoidal hidden units and d = 1 for linear units. ‖Whh‖
is the L2-norm (the largest singular value) of the recurrent weight matrix Whh
of the RNN. On the other hand, a necessary condition for exploding gradient to
occur is

‖Whh‖ > d. (13.15)

Therefore, the property of recurrent matrix Whh is essential for learning an RNN.
In [6, 78], the proposed method for solving the exploding gradient problem is to
empirically clip the gradient so that the norm of the gradient cannot exceed certain
threshold. The way to avoid the vanishing gradient is also empirical: either adding
a regularization term to push up the gradient or exploiting the information about
the curvature of the objective function [66]. Here we review the study described in
[10], which proposed and successfully experimented a more rigorous and effective
approach to learning RNNs by directly exploiting the constraints that need to be
imposed on Whh.
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13.4.2 Echo-State Property and Its Sufficient Condition

We now show that conditions described in Eqs. 13.14 and 13.15 are closely related
to whether the RNN satisfies the echo-state property, which, following [56], states
that “if the network has been run for a very long time, the current network state is
uniquely determined by the history of the input and the (teacher-forced) output.”
It is also shown in [55] that this echo-state property is equivalent to the state con-
tracting property. For networks with no feedback from the output, a network is state
contracting if for all right-infinite input sequences {xt}, where t = 0, 1, 2, . . ., there
exists a null sequence (εt)t≥0 such that for all starting states h0 and h′

0 and for all
t > 0 it holds that ‖ht − h′

t‖ < εt , where ht and h′
t are two hidden state vectors

at time t obtained when the network is driven by xt up to time t after having been
stated in x0 and x′

0, respectively. It is further shown that a sufficient condition for
the non-existence, or a necessary condition for the existence, of echo-state property
is that the spectral radius of the recurrent matrix Whh is greater than one when tanh
nonlinear units are used in the RNN’s hidden layer.

In echo-state machines, the reservoir or recurrent weight matrix Whh is randomly
generated and normalized according to the rule above and will remain unchanged
over time in the training. The input weight matrix Wxh is fixed as well. To improve
the learning, we here learn both Whh and Wxh subject to the constraint that the RNN
satisfies the echo-state property. To this end, the following sufficient condition for
the echo-state property was recently developed in [10], which can be more easily
handled in the training procedure than the original definition:

Let d =1/maxx |f ′(x)|. Then the RNN satisfies the echo-state property if

‖Whh‖∞ < d (13.16)

where ‖Whh‖∞ denote the ∞-norm of matrix Whh (i.e., maximum absolute row
sum), d = 1 for tanh units, and d = 4 for sigmoid units.

An important consequence of condition 13.16 is that it naturally avoids the explod-
ing gradient problem. If the condition 13.16 can be enforced in the training process,
there is no need to clip the gradient in a heuristic way.

13.4.3 Learning RNNs as a Constrained Optimization Problem

Given the sufficient condition for the echo-state property, we can now formulate the
problem of learning the RNN that preserves the echo-state property as the following
constrained optimization problem:

min
Θ

E(Θ) = E(Whh,Wxh, Why) (13.17)

subject to ‖Whh‖∞ ≤ d (13.18)
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That is, we need to find the set of RNN parameters that best predict the target values
on average while preserving the echo-state property. Recall that ‖Whh‖∞ is defined
as the maximum absolute row sum. Therefore, the above RNN learning problem is
equivalent to the following constrained optimization problem:

min
Θ

E(Θ) = E(Whh, Wxh, Why) (13.19)

subject to
N∑

j=1

|Wij| ≤ d, i = 1, . . . , N (13.20)

where Wij denotes the (i, j)th entry of the matrix Whh. Next, we proceed to derive
the learning algorithm that can achieve this objective.

13.4.4 A Primal-Dual Method for Learning RNNs

13.4.4.1 A Brief Introduction to Primal-Dual Method

Here let us solve the constrained optimization problem above by the primal-dual
method, a popular technique in modern optimization literature; e.g., [8]. First, the
Lagrangian of the problem can be written as

L(Θ,λ) = E(Whh, Wxh, Why) +
N∑

i=1

λi

⎛
⎝ N∑

j=1

|Wij| − d

⎞
⎠ (13.21)

where λi denotes the ith entry of the Lagrange vector λ (i.e., dual variable) and is
required to be non-negative. Let the dual function q(λ) be defined as the following
unconstrained optimization problem

q(λ) = min
Θ

L(Θ, λ) (13.22)

The dual function q(λ) in the above-unconstrained optimization problem is always
concave, even when the original cost E(Θ) is nonconvex [8]. In addition, the dual
function is always a lower bound of the original constrained optimization problem.
That is,

q(λ) ≤ E(Θ�) (13.23)

Maximizing q(λ) subject to the constraint λi ≥ 0, i = 1, . . . , N will be the best
lower bound that can be obtained from the dual function [8]. This new problem is
called the dual problem of the original optimization problem:

max
λ

q(λ) (13.24)
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subject to λi ≥ 0, i = 1, . . . , N (13.25)

which is a convex optimization problem since we are maximizing a concave objec-
tive with linear inequality constraints. After solving λ� in Eqs. 13.24 and 13.21, we
can substitute the corresponding λ� into the Lagrangian 13.21 and then solve the
corresponding set of parameters Θo = {W0

hh, W0
xh, W0

hy} that minimizes L(Θ, λ)

for this given λ�:

Θo = argmin
Θ

L(Θ, λ�) (13.26)

Then, the obtained Θo = {W0
hh, W0

xh, W0
hy} will be an approximation to an optimal

solution to the original constrained optimization problem. For convex optimization
problems, this approximate solution will be the same global optimal solution under
some mild conditions [8]. This property is called strong duality. However, in general
nonconvex problems, it will not be the exact solution. But since finding the globally
optimal solution to the original problem of 13.24 and 13.21 is not realistic, it would
be satisfactory if it can provide a good approximation.

Now let us return to the problem of 13.24 and 13.21. We are indeed solving the
following problem

max
λ	0

min
Θ

L(Θ, λ) (13.27)

where the notation λ 	 0 denotes that each entry of the vector λ is greater than or
equal to zero. The preceding analysis shows that in order to solve the problem, we
need to first minimize the Lagrangian L(Θ, λ) with respect to Θ , while in the mean
time, maximize the dual variable λ subjected to the constraint that λ 	 0. Therefore,
as we will proceed next, updating the RNN parameters consists of two steps:

• primal update—minimization of L(Θ, λ∗) with respect to Θ , and
• dual update—maximization of L(Θ∗, λ) with respect to λ.

13.4.4.2 Primal-Dual Method Applied to RNN Learning: Primal Update

We may directly apply the gradient descent algorithm to the primal update rule
to minimize the Lagrangian L(Θ, λ∗) with respect to Θ . However, it is better to
exploit the structure in this objective function, which consists of two parts: E(Θ)

that measures the prediction quality, and the part that penalizes the violation of the
constraint expressed in 13.25. The latter part is a sum ofmany 	1 regularization terms
on the rows of the matrix Whh:

N∑
j=1

|Wij| = ‖wi‖1 (13.28)
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where wi denotes the ith row vector of the matrix Whh. With this observation, the
Lagrangian in 13.21 can be written in the equivalent form of

L(Θ,λ) = E(Whh, Wxh, Why) +
N∑

i=1

λi (‖wi‖1 − d) . (13.29)

In order to minimize L(Θ, λ) with the structure above with respect to Θ =
{Whh, Wxh, Why}, we can use a technique similar to the one proposed in [2] to derive
the following iterative soft-thresholding algorithm for the primal update of Whh:

W{k}
hh = Sλμk

⎧⎨
⎩W{k−1}

hh − μk

∂E(W{k−1}
hh , W{k−1}

xh , W{k−1}
hy )

∂Whh

⎫⎬
⎭ , (13.30)

where Sλμk (X) denote a component-wise shrinkage (soft-thresholding) operator on
a matrix X, defined as

[Sλμk (X)]ij =

⎧⎪⎨
⎪⎩

Xij − λiμk Xij ≥ λiμk

Xij + λiμk Xij ≤ −λiμk

0 otherwise

(13.31)

The above primal update 13.30 for Whh is implemented by a standard stochastic
gradient descent followed by a shrinkage operator. On the other hand, the primal
updates for Wxh and Why will follow the standard stochastic gradient descent rule
since there is no constraints on them. In order to accelerate the convergence of
the algorithm, one can, for example, add momentum or use Nesterov method to
replace the gradient descent steps, as was carried out in the experiments reported
in [10, 21].

13.4.4.3 Primal-Dual Method Applied to RNN Learning: Dual Update

The dual update step is aimed to maximize L(Θ, λ) with respect to λ subject to
the constraint that λ 	 0. To this end, we use the following rule of gradient ascent
with projection, which increases the function value of L(Θ, λ) while enforcing the
constraint:

λi,k = [
λi,k−1 + μk

(‖wi,k−1‖1 − d
)]

+ (13.32)

where [x]+ = max{0, x}. Note that λi is a regularization factor in L(Θ, λ) that
penalizes the violation of constraint for the ith row of Whh. The dual update can be
interpreted as a rule to adjust the regularization factor in an adaptive manner. When
the sum of the absolute values of the ith row of Whh exceeds d, i.e., violating the
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constraint, the recursion 13.32 will increase the regularization factor λi,k on the ith
row in 13.21. On the other hand, if the constraint for a certain i is not violated, then
the dual update 13.21 will decrease the value of the corresponding λi. The projection
operator [x]+ makes sure that once the regularization factor λi is decreased below
zero, it will be set to zero and the constraint for the ith row in 13.25 will not be
penalized in 13.21.

13.5 Recurrent Neural Networks Incorporating LSTM Cells

13.5.1 Motivations and Applications

The basic RNNdescribed so far does not have sufficient structure inmodeling sophis-
ticated temporal dynamics, and thus in practice has been shown not capable of look-
ing far back into the past in many types of input sequences. These problems were
first carefully analyzed in the early work published in [53], and subsequently in
[39, 40, 44], one solution is to impose a memory structure into the RNN, result-
ing in the so-called long-short-term memory cells in the RNN proposed first in the
above early publications. Such LSTM version of the RNN was shown to overcome
some fundamental problems of traditional RNNs, and be able to efficiently learn to
solve a number of previously unlearnable tasks involving recognition of temporally
extended patterns in noisy input sequences and of the temporal order of widely sep-
arated events in noisy input streams. Like the basic RNNs described so far in this
chapter, the LSTM version can be shown to be an universal computing machine in
the sense that given enough network units, it can compute anything a conventional
computer can compute and if it has proper weight matrices. But unlike the basic
RNNs, the LSTM version is better-suited to learn from input sequence data to clas-
sify, process, and predict time series when there are very long time lags of unknown
lengths between important events.

Over the years since the early establishment of the LSTM-RNN, it has been shown
to perform very well in many useful tasks such as handwriting recognition, phone
recognition, keyword spotting, reinforcement learning for robot localization and con-
trol (in partially observable environments), online learning for protein structure pre-
diction, learning music composition, and learning of grammars, etc. An overview of
these progresses has been provided in [90]. Most recently, excellent results on large
vocabulary speech recognition by the use of the LSTM-RNN have been reported
in [88, 89]. A simpler version of the LSTM-RNN is also recently found effective
for language identification [42], speech synthesis [36, 37], and for environment-
robust speech recognition [38, 103]. In the latter study, it was shown that the LSTM
architecture can be effectively used to exploit temporal context in learning the corre-
spondences of noise-distorted and reverberant speech features and effectively handle
highly nonstationary, convolutive noise involved in the task of 2013 Computational
Hearing in Multisource Environments (CHiME) Challenge (track 2).
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13.5.2 The Architecture of LSTM Cells

The basic idea behind the LSTM cell in the RNN is to use various types of gating
(i.e., element-wise multiplication) structure to control the information flow in the
network. An LSTM-RNN is an advanced version of the RNN that contains LSTM
cells instead of, or in addition to, regular network units.AnLSTMcell can be regarded
as a complex and smart network unit capable of remembering information for a long
length of time. This is accomplished by the gating structure that determines when
the input is significant enough to remember, when it should continue to remember
or forget the information, and when it should output the information.

Mathematically, a set of LSTM cells can be described by the following forward
operations iteratively over time t = 1, 2, ..., T , following [39, 40, 44, 53, 88]:

it = σ
(

W(xi)xt + W(hi)ht−1 + W(ci)ct−1 + b(i)
)

(13.33)

ft = σ
(

W(xf )xt + W(hf )ht−1 + W(cf )ct−1 + b(f )
)

(13.34)

ct = ft • ct−1 + it • tanh
(

W(xc)xt + W(hc)ht−1 + b(c)
)

(13.35)

ot = σ
(

W(xo)xt + W(ho)ht−1 + W(co)ct + b(o)
)

(13.36)

ht = ot • tanh (ct) , (13.37)

where it , ft , ct , ot , and ht are vectors, all with the same dimensionality, which rep-
resent five different types of information at time t of the input gate, forget gate, cell
activation, output gate, and hidden layer, respectively. σ (.) is the logistic sigmoid
function, W’s are the weight matrices connecting different gates, and b’s are the
corresponding bias vectors. All the weight matrices are full except the weight matrix
W(ci) is diagonal. Note functionally, the above LSTM set, with input vector it and
hidden vector ht is akin to the input and hidden layers of the basic RNN as described
by Eq.13.1. An additional output layer need to be provided (not included in the above
set of equations) on top of the LSTM-RNN’s hidden layer. In [46], a straightforward
linear mapping from LSTM-RNN’s hidden layer to the output layer was exploited.
In [88], two intermediate, linear projection layers were created to reduce the large
dimensionality of the LSTM-RNN hidden layer’s vector ht . They were then linearly
combined to form the final output layer.

13.5.3 Training the LSTM-RNN

All LSTM-RNNparameters can be learned in a similarway to learning the basicRNN
parameters using the BPTT as described in Sect. 13.3. That is, to minimize LSTM’s
total loss on a set of training sequences, stochastic gradient descent methods can be
used to update each weight parameter where the error derivative with respect to the
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weight parameter can be computed by the BPTT. As we recall, one major difficulty
associated with the BPTT for the basic RNN is that error gradients vanish exponen-
tially quickly with the size of the time lag between important events, or the gradients
explode equally fast, both making the learning ineffective unless heuristic rules are
applied or principled constrained optimization is exploited as described in Sect. 13.4.
With the use of LSTM cells that replaces the basic RNN’s input-to-hidden layer map-
ping and hidden-to-hidden layer transition, this difficulty is largely overcome. The
reason is that when error signals are backpropagated from the output, they become
trapped in thememory portion of the LSTM cell. Therefore, meaningful error signals
are continuously fed back to each of the gates until the RNN parameters are well
trained. This makes the BPTT effective for training LSTM cells, which can remem-
ber information in the input sequence for a long time when such pattern is present
in the input data and is needed to perform the required sequence-processing task.

Of course, due to the greater structural complexity of the LSTM cells than its
counterpart in the basicRNNwhere the two nonlinearmappings (i.e., input-to-hidden
and hidden-to-hidden) typically have no designed structure, gradient computation as
required in the BPTT is expectedly more involved than that for the basic RNN.
We refer readers to Chap. 14 on computational networks in this book for additional
discussions on this topic.

13.6 Analyzing Recurrent Neural Networks—A Contrastive
Approach

We devote this section to the important topic of analyzing the capabilities and lim-
itations of the RNN, which is mathematically formulated as a state-space dynamic
system model described in Sect. 13.2. We take a contrastive approach to the analysis
by examining the similarities to and differences from the closely related state-space
formulation of the hidden dynamic model (HDM) described in Sect. 3.7 of Chap.3
on the HMM variants. The main goal of performing such a comparative analysis is
to understand the respective strengths and weaknesses of these two types of speech
models derived from quite distinct motivations yet sharing striking commonality in
their mathematical formulation of the models. Based on this understanding, it is pos-
sible to construct potentially more effective RNN-like dynamic architectures as well
as new learning paradigms to further advance the state of the art in acoustic modeling
for ASR.

13.6.1 Direction of Information Flow: Top-Down
versus Bottom-Up

The first aspect examined in our contrastive analysis between the basic RNN model
and the HDM is the opposing direction in which information flows in these two

http://dx.doi.org/10.1007/978-1-4471-5779-3_14
http://dx.doi.org/10.1007/978-1-4471-5779-3_3
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types of models. In the HDM, the speech object is modeled by a generative process
from the top linguistic symbol or label sequence to the bottom continuous-valued
acoustic observation sequence, mediated by the intermediate latent dynamic process
which is also continuous valued. That is, this top-down generative process starts
with specification of the latent linguistic sequence at the top level. Then the label
sequence generates the latent dynamic vector sequence, which in turn generates the
visible acoustic sequence at the bottom level in the model hierarchy. In contrast,
in bottom-up modeling paradigm as adopted by the RNN, information flow starts
at the bottom level of acoustic observation, which activates the hidden layer of the
RNN modeling temporal dynamics via the recurrent matrix. Then the output layer
of the RNN computes the linguistic label or target sequence as a numerical-vectorial
sequence at the top level of the model hierarchy. Since the top layer determines
the speech-class distinction, this bottom-up processing approach adopted by the
RNN can be appropriately called (direct) discriminative learning. See more detailed
discussions on discriminative learning versus generative learning in [27]. Let us now
further elaborate on the top-down versus bottom-up comparisons as connected to
generative versus discriminative learning here.

13.6.1.1 The Hidden Dynamic Model as a Top-Down Generative Process

To facilitate the comparison with the RNN, let us rewrite the HDM state Eq. 3.51
and observation Eq.3.52 both in Sect. 3.7.2 of Chap.3, into the following form most
compatible with the state-space formulation of the basic RNN described in Sect. 13.2
of this chapter:

ht = q(ht−1; Wlt ,Λlt ) + StateNoiseTerm (13.38)

xt = r(ht,Ωlt ) + ObsNoiseTerm (13.39)

where Wlt is the system matrix that shapes the (articulatory-like) state dynamics,
which canbe easily structured to followphysical constraint in speechproduction; e.g.,
[15, 16]. The parameter setΛlt include those of phonetic targets as correlates with the
components of the phonological units (e.g., symbolic articulatory features), which
can also be interpreted as the input driving force derived from speech production’s
motor control to the articulatory state dynamics. Both sets of parameters,Wlt andΛlt ,
are dependent on the label lt at time t with segmental properties; hence the model
is also called a (segmental) switching dynamic system. The system matrix Wlt is
analogous to Whh in the RNN. The parameter set Ωlt , on the other hand, governs the
nonlinear mapping from the hidden (articulatory-like) states in speech production
to continuous-valued acoustic features xt , which is the output of the HDM, on a
frame-by-frame basis. In some early implementations, Ωlt took the form of shallow
neural network weights [9, 28, 80, 97, 98]. In another implementation, Ωlt took the
form of a set of matrices in a mixture of linear experts [63, 65].

http://dx.doi.org/10.1007/978-1-4471-5779-3_3
http://dx.doi.org/10.1007/978-1-4471-5779-3_3
http://dx.doi.org/10.1007/978-1-4471-5779-3_3


13.6 Analyzing Recurrent Neural Networks—A Contrastive Approach 253

The state equation in several previous implementations of the HDM of speech
did not take nonlinear forms. Rather, the following linear form was used (e.g.,
[28, 63, 65]):

ht = Whh(lt)ht−1 + [I − Whh(lt)]tlt + StateNoiseTerm (13.40)

which exhibits the target-directed property for articulatory-like dynamics. Here, the
parameters Whh are a function of the (phonetic) label lt at a particular time frame t,
and tlt is amapping from the symbolic quantity lt of a linguistic unit to the continuous-
valued target vector with the segmental property. To make the comparisons easy with
the RNN, let us keep the nonlinear form and remove both the state and observation
noise, yielding the state-space generative model of

ht = q(ht−1; Wlt , tlt ) (13.41)

xt = r(ht,Ωlt ) (13.42)

13.6.1.2 The Recurrent Neural Net as a Bottom-Up Discriminative
Classifier

Likewise, to facilitate the comparison with the HDM, let us rewrite the RNN’s state
and observation Eqs. 13.1 and 13.2 into a more general form:

ht = f (ht−1; Whh, Wxh,, xt) (13.43)

yt = g(ht; Why) (13.44)

where information flow starts from observation data xt , going to hidden vectors ht ,
and then going to the predicted target label vectors yt , often coded in a one-hot
manner, in the bottom-up direction.

This contrastswith theHDM’s corresponding state and observationEqs. 13.41 and
13.42, which describe the information flow from the top-level label-indexed phonetic
target vector tlt to hidden vectors ht and then to observation data xt , where we clearly
see top-down information flows, opposite to the RNN’s bottom-up information flow.

To further examine other differences between the HDM and the RNN beyond
the top-down versus bottom-up difference identified above, we can keep the same
mathematical description of the RNN but exchange the variables of input xt and
output yt in Eqs. 13.43 and 13.44. This yields

ht = f (ht−1; Whh, Wyh, yt) (13.45)

xt = g(ht; Whx). (13.46)

After normalizing the RNN into the generative form of Eqs. 13.45 and 13.46 via
input-output exchange, with the same direction of information flow as the HDM, we
will analyze below the remaining contrasts between the RNN and HDMwith respect
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to the different nature of the hidden-space representations (while keeping the same
generative form of the models). We will then analyze other aspects of the contrast
between them including different ways of exploiting model parameters.

13.6.2 The Nature of Representations: Localist or Distributed

Localist and distributed representations are important concepts in cognitive science
as two distinct styles of information representation. In the localist representation,
each neuron represents a single concept on a stand-alone basis. That is, localist
units have their own meaning and interpretation, not so for the units in distributed
representation. The latter pertains to an internal representation of concepts in such
a way that they are modeled as being explained by the interactions of many hidden
factors. A particular factor learned from configurations of other factors can often
generalize well to new configurations, not so in localist representations.

Distributed representations, based on vectors consisting of many nonzero ele-
ments or units, naturally occur in a “connectionist” neural network, where a concept
is represented by a pattern of activity across a number of many units and where at the
same time a unit typically contributes to many concepts. One key advantage of such
many-to-many correspondence is that they provide robustness in representing the
internal structure of the data in terms of graceful degradation and damage resistance.
Such robustness is enabled by redundant storage of information. Another advan-
tage is that they facilitate automatic generalization of concepts and relations, thus
enabling reasoning abilities. Further, distributed representations allow similar vectors
to be associated with similar concepts and thus allow efficient use of representational
resources. These attractive properties of distributed representations, however, come
with a set of weaknesses—nonobviousness in interpreting the representations, dif-
ficulties with representing hierarchical structure, and inconvenience in representing
variable-length sequences. Distributed representations are also not directly suitable
for input and output to a network and some translation with localist representations
are needed.

Local representations, on the other hand, have advantages of explicitness and ease
of use; i.e., the explicit representation of the components of a task is simple and the
design of representational schemes for structured objects is easy. But the weaknesses
are many, including inefficiency for large sets of objects, highly redundant use of
connections, and undesirable growth of units in networks which represent complex
structure.

The HDM discussed above adopts “localist” representations for the symbolic lin-
guistic units, and the RNN makes use of distributed representations. This can be
seen directly from Eq.13.41 for the HDM and from Eq.13.45 for the RNN. In the
former, symbolic linguistic units lt as a function of time t are coded implicitly in
a stand-alone fashion. The connection of symbolic linguistic units to continuous-
valued vectors is made via a one-to-one mapping, denoted by tlt in Eq.13.41, to the
hidden dynamic’s asymptotic “targets” denoted by vector t. This type of mapping



13.6 Analyzing Recurrent Neural Networks—A Contrastive Approach 255

is common in phonetic-oriented phonology literature, and is called the “interface
between phonology and phonetics” in a functional computational model of speech
production [15]. Further, the HDM uses the linguistic labels that are represented in a
localistmanner to index separate sets of time-varying parametersWlt andΩlt , leading
to “switching” dynamics which considerably complicates the decoding computation.
This kind of parameter specification isolates the parameter interactions across dif-
ferent linguistic labels, gaining the advantage of explicit interpretation of the model
but losing on direct discrimination across linguistic labels.

In contrast, in the state equation of the RNN model shown in Eq. 13.45, the sym-
bolic linguistic units are directly represented as vectors of yt (one-hot or otherwise)
as a function of time t. No mapping to separate continuous-valued “phonetic” vec-
tors are needed. Even if the one-hot coding of yt vectors is localist, the hidden
state vector h provides a distributed representation and thus allows the model to
store a lot of information about the past in a highly efficient manner. Importantly,
there is no longer a notion of label-specific parameter sets of Wlt and Ωlt as in
the HDM. The weight parameters in the RNN are shared across all linguistic label
classes. This enables direct discriminative learning for the RNN. In addition, the
distributed representation used by the hidden layer of the RNN allows efficient and
redundant storage of information, and has the capacity to automatically disentangle
variation factors embedded in the data. However, as inherent in distributed represen-
tations discussed earlier, the RNN also carries with them the difficulty of interpreting
the parameters and hidden states, and the difficulties of modeling structure and of
exploiting explicit knowledge of articulatory dynamics into the model which we
discuss next.

13.6.3 Interpretability: Inferring Latent Layers
versus End-to-End Learning

An obvious strength of the localist representation as adopted by the HDM for model-
ing deep speech structure is that the model parameters and the latent-state variables
are explainable and easy to diagnose. In fact, one main motivation of many of such
models is that the knowledge of hierarchical structure in speech production in terms
of articulatory and vocal tract resonance dynamics can be directly (but approximately
with a clear sense of the degree of approximation) incorporated into the design of
the models [9, 15, 25, 30, 76, 80, 105]. Practical benefits of using interpretable,
localist representation of hidden state vectors include sensible ways of initializing
the parameters to be learned—e.g., with extracted formants to initialize hidden vari-
ables composed of vocal tract resonances. Another obvious benefit is the ease with
which one can diagnose and analyze errors during model implementation via exam-
ination of the inferred latent variables. Since localist representations, unlike their
distributed counterpart, do not superimpose patterns for signaling the presence of
different linguistic labels, the hidden state variables not only are explanatory but also
unambiguous. Further, the interpretable nature of the models allows complex causal
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and structured relationships to be built into them, free from the difficulty of doing
so that is associated with distributed representations. In fact, several versions of the
HDM has been constructed with many layers in the hierarchical latent space, all
with clear physical embodiment in human speech production; e.g., Chap.2 in [18].
However, the complex structure makes it very difficult to do discriminative para-
meter learning. As a result, nearly all versions of HDMs have adopted maximum-
likelihood learning or data fitting approaches. For example, the use of linear or
nonlinear Kalman filtering (E-step of the EM algorithm) for learning the parameters
in the generative state-space models has been applied to only maximum-likelihood
estimates [93, 97].

In contrast, the learning algorithm of BPTT commonly used for end-to-end train-
ing of the RNN with distributed representations for the hidden states performs dis-
criminative training by directly minimizing linguistic label prediction errors. It is
straightforward to do so in the formulation of the learning objective because each
element in the hidden state vector contributes to all linguistic labels due to the very
nature of the distributed representation. It is very unnatural and difficult to do so in the
generative HDM based on localist representations of the hidden states, where each
state and the associated model parameters typically contribute to only one particular
linguistic unit, which is used to index the set of model parameters in most generative
models including HDMs and HMMs.

13.6.4 Parameterization: Parsimonious Conditionals
versus Massive Weight Matrices

The next aspect of comparisons between the HDM and the RNN concerns very dif-
ferent ways to parameterize theHDMand the RNN—Characterization of conditional
distributions using parsimonious sets of parameters in the conditionals or represent-
ing the complex mapping using largely nonstructured massive weight matrices. Due
to the interpretable latent states in the HDM as well as the parameters associated with
them, speech knowledge can be used in the design of the model, leaving the size of
free parameters to be relatively small. For example, when vocal tract resonance vec-
tors are used to represent the hidden dynamics, a dimension of eight appears to be
sufficient to capture the prominent dynamic properties responsible for generating
the observed acoustic feature sequences. Somewhat higher dimensionality, about 13,
is needed with the use of the hidden dynamic vectors associated with the articula-
tors’ configuration in speech production. The use of such parsimonious parameter
sets to characterize conditional distributions in the HDM, a special of the dynamic
Bayesian network, which is sometimes called “small is good,” is also facilitated by
the localist representation of hidden state components and the related parameters
that are connected or indexed to a specific linguistic unit. This contrasts with the
distributed representation adopted by the RNN where both the hidden state vector
elements and the connecting weights are shared across all linguistic units, thereby
demanding many folds more model parameters.
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The ability to use speech-domain knowledge to construct generative models with
a parsimonious set of parameters is both a blessing and a curse. On the one hand,
such knowledge has been usefully exploited to constrain the target-directed and
smooth (i.e., nonoscillatory) hidden dynamics within each phone segment [63, 64],
to represent the analytical relationship between the latent vocal tract resonance vector
(both resonance frequencies and bandwidths) and cepstral coefficients [1, 20, 34],
and to model both anticipatory and regressive types of coarticulation expressed in
the latent space as a result of hidden dynamics [15, 33]. With the right prediction
of time-varying trajectories in the hidden space and then causally in the observed
acoustic space, powerful constraints can be placed in themodel formulation to reduce
overgeneration in the model space and to avoid unnecessarily large model capacity.
On the other hand, the use of speech knowledge limits the growth of the model size
as more data are made available in training. For example, when the dimensionality of
the vocal tract resonance vectors goes beyond eight,many advantages of interpretable
hidden vectors no longer hold. Since speech knowledge is necessarily incomplete, the
constraints imposed on the model space may be outweighed by the opportunity lost
with increasingly large amounts of training data and by the incomplete knowledge.

In contrast, the RNN usually do not use any speech knowledge to constrain the
model space due to the inherent difficulty of interpreting the ambiguous hidden
state represented in a distributed manner. As such, the RNN in principle has the
freedom to use increasingly larger parameters in keeping with the growing size of
the training data. Lack of constraints may cause the model to overgeneralize. This,
together with the known difficulties of the various learning algorithms for the RNN
as analyzed in [5, 78], has limited the progress of using RNNs in speech recognition
for many years until recently. More recent progresses of applying RNNs to speech
recognition have involved various methods of introducing constraints either in the
model construction or in the implementation of learning algorithms. For example, in
the studies reported in [45, 46, 88, 89], the RNN’s hidden layers are designed with
memory units based on a very clever LSTM structure. While strongly constraining
possible variations of hidden layer activities, the LSTM-RNN nevertheless allows
massive weight parameters to be used by simply increasing the total number of the
memory units as well as the complexity in the LSTM cells. Separately, the RNN can
also be constrained during the learning stage, where the size of the gradient computed
by BPTT is limited by a threshold to avoid explosion as reported in [5, 70] or where
the range of the permissible RNN parameters are constrained to be within what the
“echo-state property” would allow as explored in [10] and we reviewed in Sect. 13.4
in this chapter.

The different ways of parameterizing the HDM and the RNN also lead to distinct
styles of computation associated with both training and run-time of the two models.
In particular, the computation of the RNN is structured to be highly regular, large
matrix multiplications. This is well matched with the capability of GPUs, which is
designed for commodity high-performance supercomputing with hardware optimiz-
ability. This computational advantage of the RNN and other neural network-based
deep learning methods, unfortunately, is lacking in the HDM and in most other deep
generative models.
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13.6.5 Methods of Model Learning: Variational Inference
versus Gradient Descent

The final aspect of contrastive analysis between the HDM and the RNN is on the
very different methods in learning model parameters.1

The HDM is a deep and directed generative model, also known as deep, dynamic
Bayesian network or belief network, with heavily loopy structure and with both
discrete-valued andcontinuous-valued latent variables, and is hencehighly intractable
in inference and learning. Many empirically motivated approximate solutions have
been explored both in model structure and in learning methods; see comprehensive
reviews in [18, 31] and Chaps. 10 and 12 of [29]. The more principled approx-
imate approach, called variational inference and learning [41, 57, 79], has also
been explored in learning the HDM. In [19, 61], it was found that variational infer-
ence works surprisingly well in inferring or estimating the intermediate, continuous-
valued latent variables, i.e., vocal tract resonances or formants. But it does not do
so well in inferring or decoding the top-level, discrete-valued latent variables, i.e.,
the phonetic label sequences, both in terms of decoding accuracy and computational
cost. More recent developments in variational inference, especially the exploitation
of the DNN in implementing efficient exact sampling from the variational posterior
[4, 54, 58, 59, 74], hold promise to overcome some earlier weaknesses of HDM
inference and learning.

On the other hand, rather than a wide range of inference and learning algorithms
available to deep generative models, the RNN, as with most other neural network
models, usually exploits a single, unchallenged inference and learning algorithm
of backpropagation with at most some not so drastic variants. To bridge the above
completely different styles of learning with strengths derived from both, the RNN
and HDM need to be re-parameterized so that model parameterization will become
similar to each other. The preceding subsection on parameterization touched on
this topic from the general computational and modeling viewpoint. Recent work in
machine learning also discussed away of transformation betweenBayesian networks
and neural networks [58, 59]. The main idea is that although the posterior required
in the E-step of the variational learning is often hard to approximate well in many
intractable Bayesian network (such as the HDM), one can exploit a powerful DNN
with high capacity to drastically improve the degree of the approximation.

13.6.6 Recognition Accuracy Comparisons

Given the analysis on and comparisons presented so far in this section between the
generative HDM using localist representations and the discriminative RNN using

1 Most of the contrasts discussed here can be generalized to the differences in learning general deep
generative models (i.e., those with latent variables) and in learning deep discriminative models with
neural network architectures.
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distributed representations, the respective strengths and weaknesses associated with
these two types of models are apparent. Here, let us compile and compare the empir-
ical performance of the HDM and the RNN in terms of speech recognition accuracy.
For calibration reasons, we use the standard TIMIT phone recognition task for the
comparison since no other common tasks have been used to assess both types of
models in a consistent manner. It is worthwhile mentioning that both types of the
dynamic models are more difficult to implement than other models in use for speech
recognition such as the GMM-HMM and DNN-HMM. While the HDM has been
evaluated on the large vocabulary tasks involving Switchboard databases [9, 62, 63,
65, 80], the RNN has been mainly evaluated on the TIMIT task [10, 21, 45, 46, 81],
and most recently a nonstandard large task [88, 89].

One particular version of the HDM, called the hidden trajectorymodel, was devel-
oped and evaluated after careful design with approximations aimed to overcome var-
ious difficulties associated with localist representations as discussed earlier in this
section [32, 34]. The main approximation involves using the finite impulse response
filter to replace the infinite impulse response filter with recurrent structure as in the
original state equation of the state-space formulation of themodel. This version gives
75.2% phone recognition accuracy as reported in [32], somewhat higher than 73.9%
obtained by the basic RNN (with very careful engineering) as reported in Table I (on
page 303) of [81] and somewhat lower than 76.1% obtained by an elaborated version
of the RNN with LSTM memory units without stacking as reported in Table I (on
page 4) of [46].2 This comparison shows that the top-down generative HDM based
on localist representation of the hidden state performs similarly to the bottom-up
discriminative RNN based on distributed representation of the hidden state. This is
understandable due to the pros and cons of these different types of models analyzed
throughout this section.

13.7 Discussions

Deep hierarchical structure with multiple layers of hidden space in human speech
is intrinsically connected to its dynamic character manifested in all levels of speech
production and perception. The desire and an attempt to capitalize on a (superficial)
understanding of this deep speech structure helped ignite the recent surge of interest
in the deep learning approach to speech recognition and related applications [23, 24,
49, 106], and a more thorough understanding of the deep structure of speech dynam-
ics and their representations is expected to further advance the research progress
in speech modeling and in ASR. In Chap. 3 (Sect. 3.7 on HMM variants), we sur-
veyed a series of deep as well as shallow generative models incorporating speech
dynamics at various levels, including notably the HDM. In this chapter, we study the

2 With less careful engineering, the basic RNN accepting inputs of raw speech features could only
achieve 71.8% accuracy as reported in [21] before using DNN-derived input features.

http://dx.doi.org/10.1007/978-1-4471-5779-3_3
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discriminative counterpart of the HDM, the RNN, both expressed mathematically in
the state-space formalism. With detailed examinations of and comparisons between
these two types of models, we focus on the top-down versus bottom-up information
flows and localist versus distributed representations as their respective hallmarks and
defining characteristics.

In the distributed representation adopted by the RNNs, we cannot interpret the
meaning of activity on a single unit or neuron in isolation. Rather, the meaning of the
activity on any particular unit depends on the activities of other units. Using distrib-
uted representations, multiple concepts (i.e., phonological/linguistic symbols) can
be represented at the same time on the same set of neuronal units by superimposing
their patterns together. The strengths of distributed representations used by the RNN
include robustness, representational and mapping efficiency, and the embedding of
symbols into continuous-valued vector spaces which enable the use of powerful
gradient-based learning methods. The localist representation adopted by the genera-
tive HDM has very different properties. It offers very different advantages—easy to
interpret, understand, diagnose, and easy to work with.

The interpretability of the generative HDM allows the design of appropriate struc-
ture in the dynamic system matrix that governs the articulatory-like dynamic behav-
ior, where the constraint is imposed that no oscillatory dynamics occur within a
regime of phone-like units.3 It is much harder to develop and impose structural
constraints in the discriminative RNN, where the hidden layer does not lend itself
to physical interpretation. The LSTM structure described in Sect. 13.5 is a rare and
interesting exception, motivated by very different considerations from those in struc-
turing the HDM.

Both the HDM and the RNN are characterized by the use of dynamic recursion
in the hidden space not directly observed. The temporal unfolding of these dynamic
sequence models make the related architectures deep, with the depth being the length
of the speech feature sequence to bemodeled. In theHDM, the hidden state adopts the
localist representation with explicit physical interpretation and the model parameters
are indexed with respect to each separate linguistic/phonetic class in a parsimonious
manner. In the RNN, the hidden state adopts the distributed representation where
each unit in the hidden layer contributes to all linguistic classes via the shared use
of regular and massive weight matrices.

The comprehensive comparisons between the RNN and the HDM conducted in
Sect. 13.6 and summarized above are aimed to shed insights into the question of how
to leverage the strengths of both types of models while overcoming their respective
weaknesses. The integration of these two distinct types of generative and discrimina-
tivemodelsmay be done blindly as in the case of using the generativeDBN to pretrain
the discriminative DNN. However, much better strategies can be pursued a future
research direction, given our sufficient understanding by now of the nature of the
pros and cons associated with the two model types. As an example, one weakness

3 For example, in [15], second-order dynamics with critical damping were used to incorporate such
constraints.
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associated with the discriminative RNN is that distributed representations are not
suitable for providing direct input to the network. This difficulty has been circum-
vented in the preliminarywork reported in [21] by first using theDNN to extract input
features, which gains the advantages of distributed representations embedded in the
hidden layers of the DNN. Then, the DNN-extracted features equipped with distrib-
uted representations of the data are fed into the subsequent RNN, producing dramatic
improvement of phone recognition accuracy from 71.8% to as high as 81.2%. Other
ways to overcome the difficulties associated with localist representations in the gen-
erative, deep, and dynamic model and those with distributed representations in the
discriminative model counterpart are expected to also improve ASR performance.
As a further example, given the strength of the localist representation in interpret-
ing the hidden space of the model and thus in integrating domain knowledge, we
can exploit the generative model and create new features extracted from the latent
variables or even the generated visible variables that may be effectively combined
with other features based on distributed representations. We expect more advanced
deep learning architectures in the future for more effective ASR to be superior to the
current best RNN discussed in this chapter in several ways—Realistic properties of
speech dynamics (based on human speech production and perception) in the contin-
uous, latent, articulatory-like space will be beneficially exploited in the integrated
generative and discriminative deep architectures; the learning of such integrated
architecture will have more than a simple pass of BPTT but rather several iterative
steps of top-down followed by bottom-up, and left-to-right followed by right-to-left;
and a variety of effective deep generative-discriminative learning algorithms gener-
alizing, expanding, or integrating into the current BPTT, along the line of [14, 59,
74, 95, 104], will be developed for the integrated generative-discriminative model
emulating the deep and dynamic process of human speech in a functionally effective
and computationally efficient manner.

References

1. Bazzi, I., Acero, A., Deng, L.: An expectation-maximization approach for formant tracking
using a parameter-free nonlinear predictor. In: Proceedings of the International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (2003)

2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

3. Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In:
Neural Networks. Tricks of the Trade, pp. 437–478. Springer (2012)

4. Bengio, Y.: Estimating or propagating gradients through stochastic neurons. CoRR (2013)
5. Bengio, Y., Boulanger, N., Pascanu, R.: Advances in optimizing recurrent networks. In:

Proceedings of the International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Vancouver, Canada (2013)

6. Bengio, Y., Boulanger-Lewandowski, N., Pascanu, R.: Advances in optimizing recurrent
networks. In: Proceeding of the International Conference on Acoustics, Speech and Signal
Processing (ICASSP). Vancouver, Canada (2013)

7. Boden, M.: A guide to recurrent neural networks and backpropagation. Technical Report
T2002:03, SICS (2002)



262 13 Recurrent Neural Networks and Related Models

8. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)
9. Bridle, J., Deng, L., Picone, J., Richards, H., Ma, J., Kamm, T., Schuster, M., Pike, S., Rea-

gan, R.: An investigation fo segmental hidden dynamic models of speech coarticulation for
automatic speech recognition. Final Report for 1998 Workshop on Langauge Engineering,
CLSP, Johns Hopkins (1998)

10. Chen, J., Deng, L.: A primal-dual method for training recurrent neural networks constrained
by the echo-state property. In: Proceeding of the ICLR (2014)

11. Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.: Learn-
ing phrase representations using rnn encoder-decoder for statistical machine translation. In:
Conference on Empirical Methods in Natural Language Processing (EMNLP) (2014)

12. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Large vocabulary continuous speech recognition with
context-dependentDBN-HMMs. In: Proceedingof the InternationalConference onAcoustics,
Speech and Signal Processing (ICASSP), pp. 4688–4691 (2011)

13. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks
for large-vocabulary speech recognition. IEEE Trans. Audio, Speech Lang. Process. 20(1),
30–42 (2012)

14. Danilo Jimenez Rezende Shakir Mohamed, D.W.: Stochastic backpropagation and approx-
imate inference in deep generative models. In: Proceedings of the International Conference
on Machine Learning (ICML) (2014)

15. Deng, L.: A dynamic, feature-based approach to the interface between phonology and pho-
netics for speech modeling and recognition. Speech Commun. 24(4), 299–323 (1998)

16. Deng, L.: Computational models for speech production. In: Computational Models of Speech
Pattern Processing, pp. 199–213. Springer, New York (1999)

17. Deng, L.: Switching dynamic system models for speech articulation and acoustics. In: Math-
ematical Foundations of Speech and Language Processing, pp. 115–134. Springer, New York
(2003)

18. Deng, L.: Dyamic Speech Models—Theory, Algorithm, and Applications. Morgan and Clay-
pool (2006)

19. Deng, L., Attias, H., Lee, L., Acero, A.: Adaptive kalman smoothing for tracking vocal tract
resonances using a continuous-valued hidden dynamic model. IEEE Trans. Audio, Speech
Lang. Process. 15, 13–23 (2007)

20. Deng, L., Bazzi, I., Acero, A.: Tracking vocal tract resonances using an analytical nonlinear
predictor and a target-guided temporal constraint. In: Proceedings of the Annual Conference
of International Speech Communication Association (INTERSPEECH) (2003)

21. Deng, L., Chen, J.: Sequence classification using high-level features extracted from deep
neural networks. In: Proceedings of the International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (2014)

22. Deng, L., Hassanein, K., Elmasry, M.: Analysis of correlation structure for a neural predictive
model with application to speech recognition. Neural Netw. 7, 331–339 (1994)

23. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech
recognition and related applications: An overview. In: Proceedings of the International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). Vancouver, Canada (2013)

24. Deng, L., Hinton, G., Yu, D.: Deep learning for speech recognition and related applications.
In: NIPS Workshop. Whistler, Canada (2009)

25. Deng, L., Lee, L., Attias, H., Acero, A.: Adaptive kalman filtering and smoothing for tracking
vocal tract resonances using a continuous-valued hidden dynamic model. IEEE Trans. Audio,
Speech Lang. Process. 15(1), 13–23 (2007)

26. Deng, L., Li, J., Huang, J.T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig, G., He, X.,
Williams, J., Gong, Y., Acero, A.: Recent advances in deep learning for speech research at
microsoft. In: Proceedings of the International Conference on Acoustics, Speech and Signal
Processing (ICASSP). Vancouver, Canada (2013)

27. Deng, L., Li, X.: Machine learning paradigms in speech recognition: An overview. IEEE
Trans. Audio, Speech Lang. Process. 21(5), 1060–1089 (2013)



References 263

28. Deng, L., Ma, J.: Spontaneous speech recognition using a statistical coarticulatory model for
the hidden vocal-tract-resonance dynamics. J. Acoust. Soc. Am. 108, 3036–3048 (2000)

29. Deng, L., O’Shaughnessy, D.: Speech Processing—A Dynamic and Optimization-Oriented
Approach. Marcel Dekker Inc, NY (2003)

30. Deng, L., Ramsay, G., Sun, D.: Production models as a structural basis for automatic speech
recognition. Speech Commun. 33(2–3), 93–111 (1997)

31. Deng, L., Togneri, R.:Deep dynamicmodels for learning hidden representations of speech fea-
tures. In: Speech and Audio Processing for Coding, Enhancement and Recognition. Springer
(2014)

32. Deng, L., Yu, D.: Use of differential cepstra as acoustic features in hidden trajectorymodelling
for phonetic recognition. In: Proceedings of the InternationalConferenceonAcoustics, Speech
and Signal Processing (ICASSP), pp. 445–448 (2007)

33. Deng, L., Yu, D., Acero, A.: A bidirectional target filtering model of speech coarticulation:
two-stage implementation for phonetic recognition. IEEE Trans. Speech Audio Process. 14,
256–265 (2006)

34. Deng, L., Yu, D., Acero, A.: Structured speech modeling. IEEE Trans. Speech Audio Process.
14, 1492–1504 (2006)

35. Divenyi, P., Greenberg, S., Meyer, G.: Dynamics of Speech Production and Perception. IOS
Press (2006)

36. Fan, Y., Qian, Y., Xie, F., Soong, F.K.: TTS synthesis with bidirectional lstm based recurrent
neural networks. In: Proceedings of the Annual Conference of International Speech Commu-
nication Association (INTERSPEECH) (2014)

37. Fernandez, R., Rendel, A., Ramabhadran, B., Hoory, R.: Prosody contour predictionwith long
short-term memory, bi-directional, deep recurrent neural networks. In: Proceedings of the
Annual Conference of International Speech Communication Association (INTERSPEECH)
(2014)

38. Geiger, J., Zhang, Z., Weninger, F., Schuller, B., Rigoll, G.: Robust speech recognition using
long short-termmemory recurrent neural networks for hybrid acousticmodelling. In: Proceed-
ings of the Annual Conference of International Speech Communication Association (INTER-
SPEECH) (2014)

39. Gers, F., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with lstm.
Neural Comput. 12, 2451–2471 (2000)

40. Gers, F., Schraudolph, N., Schmidhuber, J.: Learning precise timing with lstm recurrent net-
works. J. Mach. Learn. Res. 3, 115–143 (2002)

41. Ghahramani, Z., Hinton, G.E.: Variational learning for switching state-space models. Neural
Comput. 12, 831–864 (2000)

42. Gonzalez, J., Lopez-Moreno, I., Sak, H., Gonzalez-Rodriguez, J., Moreno, P.: Automatic lan-
guage identification using long short-termmemory recurrent neural networks. In: Proceedings
of the Annual Conference of International Speech Communication Association (INTER-
SPEECH) (2014)

43. Graves, A.: Sequence transduction with recurrent neural networks. In: ICML Representation
Learning Workshop (2012)

44. Graves, A.: Generating sequences with recurrent neural networks. arXvi preprint.
arXiv:1308.0850 (2013)

45. Graves, A., Jaitly, N., Mahamed, A.: Hybrid speech recognition with deep bidirectional lstm.
In: Proceeding of the International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Vancouver, Canada (2013)

46. Graves,A.,Mahamed,A.,Hinton,G.: Speech recognitionwith deep recurrent neural networks.
In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing
(ICASSP). Vancouver, Canada (2013)

47. Heigold, G., Vanhoucke, V., Senior, A., Nguyen, P., Ranzato, M., Devin, M., Dean, J.: Multi-
lingual acoustic models using distributed deep neural networks. In: Proceedings of the Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013)

http://arxiv.org/abs/1308.0850


264 13 Recurrent Neural Networks and Related Models

48. Hermans, M., Schrauwen, B.: Training and analysing deep recurrent neural networks. In:
Proceedings of the Neural Information Processing Systems (NIPS) (2013)

49. Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V.,
Nguyen, P., Sainath, T., Kingsbury, B.: Deep neural networks for acoustic modeling in speech
recognition. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

50. Hinton, G., Deng, L., Yu, D., Dahl, G.E.: Mohamed, A.r., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

51. Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural
Comput. 18, 1527–1554 (2006)

52. Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks.
Science 313(5786), 504–507 (2006)

53. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

54. Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference
55. Jaeger, H.: Short term memory in echo state networks. GMD Report 152,GMD—German

National Research Institute for Computer Science (2001)
56. Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and

the “echo state network” approach. GMD Report 159, GMD—German National Research
Institute for Computer Science (2002)

57. Jordan, M., Sudderth, E., Wainwright, M., Wilsky, A.: Major advances and emerging devel-
opments of graphical models, special issue. IEEE Signal Process. Mag. 27(6), 17,138 (2010)

58. Kingma, D., Welling, M.: Auto-encoding variational bayes. In: arXiv:1312.6114v10 (2014)
59. Kingma, D.,Welling,M.: Efficient gradient-based inference through transformations between

bayes nets and neural nets. In: Proceedings of the International Conference on Machine
Learning (ICML) (2014)

60. Kingsbury, B., Sainath, T.N., Soltau, H.: Scalable minimum bayes risk training of deep neural
network acoustic models using distributed hessian-free optimization. In: Proceedings of the
Annual Conference of International Speech Communication Association (INTERSPEECH)
(2012)

61. Lee, L., Attias, H., Deng, L.: Variational inference and learning for segmental switching state
space models of hidden speech dynamics. In: Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), vol. 1, pp. I-872–I-875 (2003)

62. Ma, J., Deng, L.: A path-stack algorithm for optimizing dynamic regimes in a statistical hidden
dynamic model of speech. Comput. Speech Lang. 14, 101–104 (2000)

63. Ma, J., Deng, L.: Efficient decoding strategies for conversational speech recognition using a
constrained nonlinear state-space model. IEEE Trans. Audio Speech Process. 11(6), 590–602
(2003)

64. Ma, J., Deng, L.: Efficient decoding strategies for conversational speech recognition using a
constrained nonlinear state-space model. IEEE Trans. Audio, Speech Lang. Process. 11(6),
590–602 (2004)

65. Ma, J.,Deng, L.: Target-directedmixture dynamicmodels for spontaneous speech recognition.
IEEE Trans. Audio Speech Process. 12(1), 47–58 (2004)

66. Maas,A.L., Le,Q.,O’Neil, T.M.,Vinyals,O.,Nguyen, P.,Ng,A.Y.:Recurrent neural networks
for noise reduction in robust asr. In: Proceedings of the Annual Conference of International
Speech Communication Association (INTERSPEECH). Portland, OR (2012)

67. Mesnil, G., He, X., Deng, L., Bengio, Y.: Investigation of recurrent-neural-network archi-
tectures and learning methods for spoken language understanding. In: Proceedings of the
Annual Conference of International Speech Communication Association (INTERSPEECH).
Lyon, France (2013)

68. Mikolov, T.: Rnntoolkit http://www.fit.vutbr.cz/imikolov/rnnlm/ (2012). http://www.fit.vutbr.
cz/~imikolov/rnnlm/

http://arxiv.org/abs/1312.6114v10
http://www.fit.vutbr.cz/imikolov/rnnlm/
http://www.fit.vutbr.cz/~imikolov/rnnlm/
http://www.fit.vutbr.cz/~imikolov/rnnlm/


References 265

69. Mikolov, T.: Statistical Language Models Based on Neural Networks. Ph.D. thesis, Brno
University of Technology (2012)

70. Mikolov, T., Deoras, A., Povey, D., Burget, L., Cernocky, J.: Strategies for training large
scale neural network language models. In: Proceedings of the IEEEWorkshop on Automfatic
Speech Recognition and Understanding (ASRU), pp. 196–201. IEEE, Honolulu, HI (2011)

71. Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., Khudanpur, S.: Recurrent neural network
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Chapter 14
Computational Network

Abstract In the previous chapters, we have discussed various deep learning models
for automatic speech recognition (ASR). In this chapter, we introduce computational
network (CN), a unified framework for describing arbitrary learning machines, such
as deep neural networks (DNNs), computational neural networks (CNNs), recurrent
neural networks (RNNs), long short term memory (LSTM), logistic regression, and
matrixum entropy model, that can be illustrated as a series of computational steps.
A CN is a directed graph in which each leaf node represents an input value or a
parameter and each nonleaf node represents a matrix operation upon its children.
We describe algorithms to carry out forward computation and gradient calculation
in CN and introduce most popular computation node types used in a typical CN.

14.1 Computational Network

There is a common property in key machine learning models, such as deep neural
networks (DNNs) [7, 13, 16, 23, 24, 31], convolutional neural networks (CNNs) [1,
2, 5, 6, 8, 17–19, 21, 22], and recurrent neural networks (RNNs) [14, 20, 25–27].
All these models can be described as a series of computational steps. For example,
a one-hidden-layer sigmoid neural network can be described as the computational
steps listed in Algorithm14.1. If we know how to compute each step and in which
order the steps are computed, we have an implementation of the neural network.
This observation suggests that we can unify all these models under the framework of
computational network (CN), part of which has been implemented in toolkits such
as Theano [3], CNTK [12] and RASR/NN [29].

A computational network is a directed graph {V,E}, where V is a set of vertices
and E is a set of directed edges. Each vertex, called a computation node, represents a
computation. Vertices with edges toward a computation node are the operands of the
associated computation and sometimes called the children of the computation node.
Here, the order of operandsmatters for someoperations such asmatrixmultiplication.
Leaf nodes do not have children and are used to represent input values or model

This chapter has been published as part of the CNTK document [30].
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Algorithm 14.1 Computational Steps Involved in an One-Hidden-Layer Sigmoid
Neural Network.
1: procedure OneHiddenLayerNNComputation(X)

� Each column of X is an observation vector
2: T(1) ← W(1)X
3: P(1) ← T(1) + B(1) � Each column of B(1) is the bias b(1)

4: S(1) ← σ
(
P(1)

) � σ (.) is the sigmoid function applied element-wise
5: T(2) ← W(2)S(1)

6: P(2) ← T(2) + B(2) � Each column of B(2) is the bias b(2)

7: O ← softmax
(
P(2)

) � Apply softmax column-wise to get output O
8: end procedure

parameters that are not result of some computation. A CN can be easily represented
as a set of computation nodes n and their children

{
n : c1, . . . , cKn

}
, where Kn is

the number of children of node n. For leaf nodes Kn = 0. Each computation node
knows how to compute the value of itself given the input operands (children).

Figure14.1 is the one-hidden-layer sigmoid neural network of Algorithm14.1
represented as a CN inwhich each node n is identified by a {nodename:operatortype}
pair and takes its ordered children as the operator’s inputs. From the figure, we can
observe that in CN, there is no concept of layers. Instead, a computation node is the
basic element of operations. This makes the description of a simple model such as
DNN more cumbersome, but this can be alleviated by grouping computation nodes
together with macros. In return, CN provides us with greater flexibility in describing
arbitrary networks and allows us to build almost all models we are interested in
within the same unified framework. For example, we can easily modify the network
illustrated in Fig. 14.1 to use rectified linear unit instead of a sigmoid nonlinearity.
We can also build a network that has two input nodes as shown in Fig. 14.2 or a
network with shared model parameters as shown in Fig. 14.3.

Fig. 14.1 Represent the
one-hidden-layer sigmoid
neural network of
Algorithm14.1 with a
computational network

X: InputW(1): Weight

T(1): Times

P(1): Plus

B(1): Weight

S(1): SigmoidW(2): Weight

T(2): Times

P(2): Plus

B(2): Weight

O: Softmax
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Fig. 14.2 A computational
network with two input nodes
(highlighted)

X(1): InputW(1): Weight

T(1): Times

P(1): Plus

X(2): Input

S(1): SigmoidW(2): Weight

T(2): Times

P(2): Plus

B(2): Weight

O: Softmax

Fig. 14.3 A computational
network with shared model
parameters (highlighted).
Here, we assume the input X,
hidden layer S(1), and output
layer O have the same
dimension

X: InputW(1): Weight

T(1): Times

P(1): Plus

B(1): Weight

S(1): Sigmoid

T(2): Times

P(2): Plus

B(2): Weight

O: Softmax

14.2 Forward Computation

When the model parameters (i.e., weight nodes in Fig. 14.1) are known, we can
compute the value of any node given the new input values. Unlike in the DNN
case, where the computation order can be trivially determined as layer-by-layer
computation frombottomup, inCNdifferent network structure comeswith a different
computation order. When the CN is a directed acyclic graph (DAG), the computation
order can be determined with a depth-first traverse over the DAG. Note that in a
DAG, there is no directed cycles (i.e., no recurrent loop). However, there might
be loops if we do not consider edge directions, for which Fig. 14.3 is an example.
This is because the same computation node may be a child of several other nodes.
Algorithm14.2 determines the computation order of a DAG and takes care of this
condition. Once the order is decided, it will remain the same for all the subsequent
runs, regardless of the computational environment. In other words, this algorithm
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only needs to be executed per output node and then cache the computation order.
Following the order determined by Algorithm14.2, the forward computation of the
CN is carried out synchronously. The computation of the next node starts only after
the computation of the previous node has finished. It is suitable for environments
where single computing device, such as one GPGPU or one CPU host, is used, or
the CN itself is inherently sequential, e.g., when the CN represents a DNN.

Algorithm 14.2 Synchronous forward computation of a CN. The computation order
is determined by a depth-first traverse over the DAG.
1: procedure DecideForwardComputationOrder(root , visi ted, order )

� Enumerate nodes in the DAG in the depth-first order.
� visi ted is initialized as an empty set. order is initialized as an empty queue

2: if root /∈ visi ted then � the same node may be a child of several nodes.
3: visi ted ← visi ted ∪ root
4: for each c ∈ root.children do � apply to children recursively
5: call DecideForwardComputationOrder(c, visi ted, order )
6: order ← order + root � Add root to the end of order
7: end for
8: end if
9: end procedure

The forward computation can also be carried out asynchronously with which the
order of the computation is determined dynamically. This can be helpful when theCN
hasmany parallel branches and there aremore than one computing device to compute
these branches in parallel. Algorithm14.3 shows an algorithm that carries out the
forward computation of a CN asynchronously. In this algorithm, all the nodes whose
children have not been computed are in the waiting set and those whose children are
computed are in the ready set. At the beginning, all nonleaf descendents of root are
in the waiting set and all leaf descendents are in the ready set. The scheduler picks
a node from the ready set based on some policy, removes it from the ready set, and
dispatches it for computation. Popular policies include first-come/first-serve, shortest
task first, and least data movement. When the computation of the node finishes, the
system calls the SignalComplete method to signal to all its parent nodes. If all
the children of a node have been computed, the node is moved from the waiting set
to the ready set. The algorithm stops when all nodes are computed. Although not
explicitly indicated in the Algorithm14.3, the SignalComplete procedure is called
under concurrent threads and should be guarded for thread safety. This algorithm
can be exploited to carry out computation on any DAG instead of just a CN.

In many cases, we may need to compute the value for a node with changing input
values. To avoid duplicate computation of shared branches, we can add a time stamp
to each node andonly recompute the value of the node if at least one of the children has
newer value. This can be easily implemented by updating the time stamp whenever a
new value is provided or computed, and by excluding nodes whose children is older
from the actual computation.



14.2 Forward Computation 271

Algorithm 14.3 Asynchronous forward computation of a CN. A node is moved to
the ready set when all its children have been computed. A scheduler monitors the
ready set and decides where to compute each node in the set.
1: procedure SignalComplete(node, waiting, ready)

� Called when the computation of the node is finished. Needs to be thread safe.
� waiting is initialized to include all nonleaf descendents of root .

� ready is initialized to include all leaf descendents of root .
2: for each p ∈ node.parents ∧ p ∈ waiting do
3: p.num FinishedChildren + +
4: if p.num FinishedChildren == p.numChildren then

� all children have been computed
5: waiting ← waiting − node
6: ready ← ready ∪ node
7: end if
8: end for
9: end procedure
10: procedure ScheduleComputation(ready)

� Called by the job scheduler when a new node is ready or computation resource is
available.

11: pick node ∈ ready according to some policy
12: ready ← ready − node
13: dispatch node for computation.
14: end procedure

In both Algorithms14.2 and14.3 each computation node needs to know how to
compute its valuewhen the operands are known. The computation can be as simple as
matrix summation or element-wise application of sigmoid function or as complex as
whatever itmaybe.Wewill describe the evaluation functions for popular computation
node types in Sect. 14.4.

14.3 Model Training

To train a CN, we need to define a training criterion J . Popular criteria include
cross-entropy (CE) for classification and mean square error (MSE) for regression as
have been discussed in Chap.4. Since the training criterion is also a result of some
computation, it can be represented as a computation node and inserted into the CN.
Figure14.4 illustrates a CN that represents a one-hidden-layer sigmoid neural net-
work augmented with a CE training criterion node. If the training criterion contains
regularization terms, the regularization terms can also be implemented as computa-
tion nodes and the final training criterion node is a weighted sum of themain criterion
and the regularization term.

The model parameters in a CN can be optimized over a training set
S = {(xm, ym) |0 ≤ m < M} using the minibatch based backpropagation (BP) al-
gorithm similar to that described in Algorithm4.2. More specifically, we improve

http://dx.doi.org/10.1007/978-1-4471-5779-3_4
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Fig. 14.4 The
one-hidden-layer sigmoid
neural network augmented
with a cross-entropy training
criterion node J and a label
node L

X: InputW(1): Weight

T(1): Times

P(1): Plus

B(1): Weight

S(1): SigmoidW(2): Weight

T(2): Times

P(2): Plus

B(2): Weight

O: Softmax L: Input

J: CrossEntropy

the model parameter W at each step t + 1 as

Wt+1 ← Wt − ε�Wt , (14.1)

where

�Wt = 1

Mb

Mb∑
m=1

∇Wt J
(
W; xm, ym)

, (14.2)

and Mb is the minibatch size. The key here is the computation of ∇Wt J (W; xm, ym)

which we will simplify as ∇ J
W. Since a CN can have arbitrary structure, we cannot

use the exact same BP algorithm described in Algorithm4.2 to compute ∇ J
W.

A naive solution to compute ∇ J
W is illustrated in Fig. 14.5, in which W(1) and

W(2) are model parameters. In this solution, each edge is associated with a partial
derivative, and

∇ J
W(1) = ∂ J

∂V(1)

∂V(1)

∂V(2)

∂V(2)

∂W(1)
+ ∂ J

∂V(3)

∂V(3)

∂V(4)

∂V(4)

∂W(1)
(14.3)

∇ J
W(2) = ∂ J

∂V(1)

∂V(1)

∂V(2)

∂V(2)

∂W(2)
. (14.4)

This solution comes with two major drawbacks. First, each derivative can
have very high dimension. If V ∈ R

N1×N2 and W ∈ R
N3×N4 then ∂V

∂W ∈
R

(N1×N2)×(N3×N4). Thismeans a large amount ofmemory is needed to keep the deriv-

atives. Second, there are many duplicated computations. For example, ∂ J
∂V(1)

∂V(1)

∂V(2) is

computed twice in this example, once for ∇ J
W(1) and once for ∇ J

W(2) .
Fortunately, there is a much simpler and more efficient approach to compute the

gradient as illustrated in Fig. 14.6. In this approach, each node n keeps two values:
the evaluation (forward computation) result Vn and the gradient ∇ J

n . Note that the
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Fig. 14.5 The naive gradient
computation in CN. W(1) and
W(2) are model parameters
and each edge is associated
with a partial derivative

W(1)

V(2)

V(1)

J

V(4)

V(3)

W(2)

Fig. 14.6 An efficient
gradient computation
algorithm in CN. W(1) and
W(2) are model parameters.
Each node n stores both the
value of the node υn and the
gradient ∇ J

n

W(1)

V(2)

V(1)

J

V(4)

V(3)

W(2)

training criterion J is always a scalar, if Vn ∈ R
N1×N2 then ∇ J

n ∈ R
N1×N2 . This

requires significantly less memory than that required in the naive solution illustrated
in Fig. 14.5. This approach also allows for factorizing out the common prefix terms
and making computation linear in the number of nodes in the graph. For example,

∂ J
∂V(2) is computedonly once andused twicewhen computing ∂ J

∂W(1) and
∂ J

∂W(2) with this
approach. This is analogous to common subexpression elimination in a conventional
expression graph, only here the common subexpressions are the parents of the nodes
rather than the children.

Automatic differentiation has been an active research area for decades and many
techniques have been proposed [10]. A simple recursive algorithm for deciding the
gradient computation order, so that the gradient computation can be efficiently carried
out is shown in Algorithm14.4 to which a similar recursive algorithm for scalar
functions has been provided [4, 11]. This algorithm assumes that each node has a
ComputePartialGradient(child) functionwhich computes the gradient of the training
criterionwith regard to the node’s child child and is called in the order that is decided
by the algorithm. Before the algorithm is computed, the gradient ∇ J

n at each node n
is set to 0, the queue order is set to empty, and parentsLe f t is set to the number of
parents of each node. This function is then called on a criterion node that evaluates
to a scalar. Similar to the forward computation, an asynchronous algorithm can be
derived. Once the gradient is known, theminibatch-based stochastic gradient descent
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(SGD) algorithm discussed in Chap.4 and other training algorithms that depend on
gradient only can be used to train the model.

Alternatively, the gradients can be computed by following the reverse order of
the forward computation and calling each node’s parents’ ComputePartialGradient
(child) function and passing itself as the child argument. This approach, however,
requires additional bookkeeping, e.g., keeping pointers to a node’s parents which
can introduce additional overhead when manipulating the network architecture.

Algorithm 14.4 Reverse automatic gradient computation algorithm. At the top level
node must be a training criterion node that evaluates to a scalar.
1: procedure DecideGradientComputationOrder(node, parentsLe f t , order )

� Decide the order to compute the gradient at all descendents of node.
� parentsLe f t is initialized to the number of parents of each node.

� order is initialized to an empty queue.
2: if IsNotLeaf(node) then
3: parentsLe f t[node] − −
4: if parentsLe f t[node] == 0 ∧ node /∈ order then � All parents have been computed.
5: order ← order + node � Add node to the end of order
6: for each c ∈ node.children do
7: call DecideGradientComputationOrder(c, parentsLe f t , order )
8: end for
9: end if
10: end if
11: end procedure

Inmany cases, not all the gradients need to be computed. For example, the gradient
with regard to the input value is never needed.When adapting the model, some of the
model parameters do not need to be updated and thus it is unnecessary to compute the
gradients with regard to these parameters. We can reduce the gradient computation
by keeping a needGradient flag for each node. Once the flags of leaf nodes (either
input values or model parameters) are known, the flags of the nonleaf nodes can
be determined using Algorithm14.5, which is essentially a depth-first traversal over
the DAG. Since both Algorithms14.2 and14.5 are essentially depth-first traversal
over the DAG and both only need to be executed once they may be combined in one
function.

Since every instantiation of a CN is task dependent and different, it is critical
to have a way to check and verify the gradients computed automatically. A simple
technique to estimate the gradient numerically is:

∂ J

∂wi j
≈ J

(
wi j + ε

) − J
(
wi j − ε

)
2ε

, (14.5)

where wi j is the (i, j)th element of a model parameter W, ε is a small constant
typically set to 10−4, and J

(
wi j + ε

)
and J

(
wi j − ε

)
are the objective function

values evaluated with all other parameters fixed and wi j changed to wi j + ε and

http://dx.doi.org/10.1007/978-1-4471-5779-3_4
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Algorithm 14.5 Update the needGradient flag recursively.
1: procedure UpdateNeedGradientFlag(root , visi ted)

� Enumerate nodes in the DAG in the depth-first order.
� visi ted is initialized as an empty set.

2: if root /∈ visi ted then � The same node may be a child of several nodes and revisited.
3: visi ted ← visi ted ∪ root
4: for each c ∈ root.children do
5: call UpdateNeedGradientFlag(c, visi ted, order )
6: if I s Not Lea f (node) then
7: if node.AnyChild NeedGradient () then
8: node.needGradient ← true
9: else
10: node.needGradient ← f alse
11: end if
12: end if
13: end for
14: end if
15: end procedure

wi j − ε, respectively. In most cases, the numerically estimated gradient and the
gradient computed from the automatic gradient computation agree to at least four
significant digits if double precision computation is used. Note that this technique
works well with a large range of ε values, except extremely small values such as
10−20 which would lead to numerical round-off errors.

14.4 Typical Computation Nodes

For the forward computation and gradient calculation algorithms described above
to work, we assume that each type of computation node implements a function
Evaluate to evaluate the value of the node given the values of its child nodes,
and the function ComputePartialGradient (child) to compute the gradient of the
training criterion with regard to the child node child given the node value Vn and
the gradient ∇ J

n of the node n and values of all its child nodes. For simplicity, we
will remove the subscript in the following discussion.

In this section, we introduce the most widely used computation node types and
the corresponding Evaluate and ComputePartialGradient (child) functions. In
the following discussion, we use symbols listed in Table14.1 to describe the com-
putations. We treat each minibatch of input values as a matrix in which each column
is a sample. In all the derivations of the gradients, we use the identity

∂ J

∂xi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂xi j
, (14.6)
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Table 14.1 Symbols used in describing the computation nodes

Symbols Description

λ A scalar

d Column vector that represents the diagonal of a square matrix

X Matrix of the first operand

Y Matrix of the second operand

V Value of current node

∇ J
n (or ∇ J

V) Gradient of the current node

∇ J
X Gradient of the child node (operand) X

∇ J
Y Gradient of the child node (operand) Y

• Element-wise product

� Element-wise division

◦ Inner product of vectors applied on matrices column-wise

� Inner product applied to each row

δ (.) Kronecker delta

1m,n An m × n matrix with all 1’s

Xα Element-wise power

vec (X) Vector formed by concatenating columns of X

where υmn is the (m, n)th element of the matrix V, and xi j is the (i, j)th element of
matrix X.

14.4.1 Computation Node Types with No Operand

The values of a computation node that has no operand are given instead of computed.
As a result, both Evaluate and ComputePartialGradient (child) functions for
these computation node types are empty.

• Parameter: used to represent model parameters that need to be saved as part of
the model.

• InputValue: used to represent features, labels, or control parameters that are pro-
vided by users at run time.

14.4.2 Computation Node Types with One Operand

In these computation node types, Evaluate = V (X) and ComputePartial
Gradient (X) = ∇ J

X
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• Negate: reverse the sign of each element in the operand X.

V (X) ← −X (14.7)

∇ J
X ← ∇ J

X − ∇ J
n . (14.8)

The gradient can be derived by observing

∂υmn

∂xi j
=

{
−1 m = i ∧ n = j

0 else
(14.9)

and

∂ J

∂xi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂xi j
= − ∂ J

∂υi j
. (14.10)

• Sigmoid: apply the sigmoid function element-wise to the operand X.

V (X) ← 1

1 + e−X (14.11)

∇ J
X ← ∇ J

X + ∇ J
n • [V • (1 − V )] . (14.12)

The gradient can be derived by observing

∂υmn

∂xi j
=

{
υi j

(
1 − υi j

)
m = i ∧ n = j

0 else
(14.13)

and

∂ J

∂xi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂xi j
= ∂ J

∂υi j
υi j

(
1 − υi j

)
. (14.14)

• Tanh: apply the tanh function element-wise to the operand X.

V (X) ← eX − e−X

eX + e−X (14.15)

∇ J
X ← ∇ J

X + ∇ J
n • (1 − V • V ) . (14.16)
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The gradient can be derived by observing

∂υmn

∂xi j
=

{
1 − υ2

i j m = i ∧ n = j

0 else
(14.17)

and
∂ J

∂xi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂xi j
= ∂ J

∂υi j

(
1 − υ2

i j

)
(14.18)

• ReLU: apply the rectified linear operation element-wise to the operand X.

V (X) ← max (0, X) (14.19)

∇ J
X ← ∇ J

X + ∇ J
n • δ (X > 0) . (14.20)

The gradient can be derived by observing

∂υmn

∂xi j
=

{
δ
(
xi j > 0

)
m = i ∧ n = j

0 else
(14.21)

we have
∂ J

∂xi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂xi j
= ∂ J

∂υi j
δ
(
xi j > 0

)
. (14.22)

• Log: apply the log function element-wise to the operand X.

V (X) ← log (X) (14.23)

∇ J
X ← ∇ J

X + ∇ J
n • 1

X
. (14.24)

The gradient can be derived by observing

∂υmn

∂xi j
=

{
1

xi j
m = i ∧ n = j

0 else
(14.25)

and
∂ J

∂xi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂xi j
= ∂ J

∂υi j

1

xi j
. (14.26)

• Exp: apply the exponent function element-wise to the operand X.
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V (X) ← exp (X) (14.27)

∇ J
X ← ∇ J

X + ∇ J
n • V . (14.28)

The gradient can be derived by observing

∂υmn

∂xi j
=

{
υi j m = i ∧ n = j

0 else
(14.29)

we have
∂ J

∂xi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂xi j
= ∂ J

∂υi j
υi j . (14.30)

• Softmax: apply the softmax function column-wise to the operand X. Each column
is treated as a separate sample.

m j (X) ← max
i

xi j (14.31)

ei j (X) ← exi j−m j (X) (14.32)

s j (X) ←
∑

i

ei j (X) (14.33)

υi j (X) ← ei j (X)

s j (X)
(14.34)

∇ J
X ← ∇ J

X +
[
∇ J

n − ∇ J
n ◦ V

]
• V . (14.35)

The gradient can be derived by observing

∂υmn

∂xi j
=

⎧⎪⎨
⎪⎩

υi j
(
1 − υi j

)
m = i ∧ n = j

−υmjυi j n = j

0 else

(14.36)

we have

∂ J

∂xi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂xi j
=

(
∂ J

∂υi j
−

∑
m

∂ J

∂υmj
υmj

)
υi j . (14.37)

• SumElements: sum over all elements in the operand X.

υ (X) ←
∑
i, j

xi j (14.38)

∇ J
X ← ∇ J

X + ∇ J
n . (14.39)
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The gradient can be derived by noting that υ and ∇ J
n are scalars,

∂υ

∂xi j
= 1 (14.40)

and
∂ J

∂xi j
= ∂ J

∂υ

∂υ

∂xi j
= ∂ J

∂υ
. (14.41)

• L1Norm: take the matrix L1 norm of the operand X.

υ (X) ←
∑
i, j

|xi j | (14.42)

∇ J
X ← ∇ J

X + ∇ J
n sgn (X) . (14.43)

The gradient can be derived by noting that υ and ∇ J
n are scalars,

∂υ

∂xi j
= sgn

(
xi j

)
(14.44)

and
∂ J

∂xi j
= ∂ J

∂υ

∂υ

∂xi j
= ∂ J

∂υ
sgn

(
xi j

)
. (14.45)

• L2Norm: take the matrix L2 norm (Frobenius norm) of the operand X.

υ (X) ←
√∑

i, j

(
xi j

)2 (14.46)

∇ J
X ← ∇ J

X + 1

υ
∇ J

n X. (14.47)

The gradient can be derived by noting that υ and ∇ J
n are scalars,

∂υ

∂xi j
= xi j

υ
(14.48)

and
∂ J

∂xi j
= ∂ J

∂υ

∂υ

∂xi j
= 1

υ

∂ J

∂υ
xi j . (14.49)
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14.4.3 Computation Node Types with Two Operands

In these computation node types, Evaluate = V (a, Y), where a can be X, λ or d,
and ComputePartialGradient (b) = ∇ J

b where b can be X, Y or d.

• Scale: scale each element of Y by λ.

V (λ, Y) ← λY (14.50)

∇ J
λ ← ∇ J

λ + vec
(
∇ J

n

)
◦ vec (Y) (14.51)

∇ J
Y ← ∇ J

Y + λ∇ J
n . (14.52)

The gradient ∇ J
λ can be derived by observing

∂υmn

∂λ
= ymn (14.53)

and
∂ J

∂λ
=

∑
m,n

∂ J

∂υmn

∂υmn

∂λ
=

∑
m,n

∂ J

∂υmn
ymn . (14.54)

Similarly to derive the gradient ∇ J
y , we note that

∂υmn

∂yi j
=

{
λ m = i ∧ n = j

0 else
(14.55)

and get
∂ J

∂yi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂yi j
= λ

∂ J

∂υi j
(14.56)

• Times: matrix product of operands X and Y. Must satisfy X.cols = Y.rows.

V (X, Y) ← XY (14.57)

∇ J
X ← ∇ J

X + ∇ J
n YT (14.58)

∇ J
Y ← ∇ J

Y + XT ∇ J
n . (14.59)

The gradient ∇ J
X can be derived by observing

∂υmn

∂xi j
=

{
y jn m = i

0 else
(14.60)

and
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∂ J

∂xi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂xi j
=

∑
n

∂ J

∂υin
y jn . (14.61)

Similarly to derive the gradient ∇ J
Y, we note that

∂υmn

∂yi j
=

{
xmi n = j

0 else
(14.62)

and get
∂ J

∂yi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂yi j
=

∑
m

∂ J

∂υmj
xmi (14.63)

• ElementTimes: element-wise product of two matrices. Must satisfy X.rows =
Y.rows and X.cols = Y.cols.

υi j (X, Y) ← xi j yi j (14.64)

∇ J
X ← ∇ J

X + ∇ J
n • Y (14.65)

∇ J
Y ← ∇ J

Y + ∇ J
n • X. (14.66)

The gradient ∇ J
X can be derived by observing

∂υmn

∂xi j
=

{
yi j m = i ∧ n = j

0 else
(14.67)

and
∂ J

∂xi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂yi j
= ∂ J

∂υi j
yi j . (14.68)

The gradient ∇ J
Y can be derived exactly the same way due to symmetry.

• Plus: sum of two matrices X and Y. Must satisfy X.rows = Y.rows. If X.cols 
=
Y.cols but one of them is a multiple of the other, the smaller matrix needs to be
expanded by repeating itself.

V (X, Y) ← X + Y (14.69)

∇ J
X ←

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ J
X + ∇ J

n X.rows = V.rows ∧ X.cols = V.cols

∇ J
X + 11,V.rows∇ J

n X.rows = 1 ∧ X.cols = V.cols

∇ J
X + ∇ J

n 1V.cols,1 X.rows = V.rows ∧ X.cols = 1

∇ J
X + 11,V.rows∇ J

n 1v.cols,1 X.rows = 1 ∧ X.cols = 1

(14.70)
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∇ J
Y ←

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ J
Y + ∇ J

n Y.rows = V.rows ∧ Y.cols = V.cols

∇ J
Y + 11,V.rows∇ J

n Y.rows = 1 ∧ Y.cols = V.cols

∇ J
Y + ∇ J

n 1V.cols,1 Y.rows = V.rows ∧ Y.cols = 1

∇ J
Y + 11,V.rows∇ J

n 1V.cols,1 Y.rows = 1 ∧ Y.cols = 1

(14.71)

The gradient∇ J
X can be derived by observing that whenX has the same dimension

as V, we have
∂υmn

∂xi j
=

{
1 m = i ∧ n = j

0 else
(14.72)

and
∂ J

∂xi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂xi j
= ∂ J

∂υi j
(14.73)

If X.rows = 1 ∧ X.cols = V.cols we have

∂υmn

∂xi j
=

{
1 n = j

0 else
(14.74)

and
∂ J

∂xi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂xi j
=

∑
m

∂ J

∂υmj
(14.75)

We can derive ∇ J
X and ∇ J

Y under other conditions similarly.

• Minus: difference of two matrices X and Y. Must satisfy X.rows = Y.rows. If
X.cols 
= Y.cols but one of them is a multiple of the other, the smaller matrix
needs to be expanded by repeating itself.

V (X, Y) ← X − Y (14.76)

∇ J
X ←

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ J
X + ∇ J

n X.rows = V.rows ∧ X.cols = V.cols

∇ J
X + 11,V.rows∇ J

n X.rows = 1 ∧ X.cols = V.cols

∇ J
X + ∇ J

n 1V.cols,1 X.rows = V.rows ∧ X.cols = 1

∇ J
X + 11,V.rows∇ J

n 1v.cols,1 X.rows = 1 ∧ X.cols = 1

(14.77)

∇ J
Y ←

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇ J
Y − ∇ J

n Y.rows = V.rows ∧ Y.cols = V.cols

∇ J
Y − 11,V.rows∇ J

n Y.rows = 1 ∧ Y.cols = V.cols

∇ J
Y − ∇ J

n 1V.cols,1 Y.rows = V.rows ∧ Y.cols = 1

∇ J
Y − 11,V.rows∇ J

n 1V.cols,1 Y.rows = 1 ∧ Y.cols = 1

(14.78)
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The derivation of the gradients is similar to that for the Plus node.

• DiagTimes: the product of a diagonal matrix (whose diagonal equals to d) and an
arbitrary matrix Y. Must satisfy d.rows = Y.rows.

υi j (d, Y) ← di yi j (14.79)

∇ J
d ← ∇ J

d + ∇ J
n � Y (14.80)

∇ J
Y ← ∇ J

Y + DiagTimes
(

d,∇ J
n

)
. (14.81)

The gradient ∇ J
d can be derived by observing

∂υmn

∂di
=

{
yin m = i

0 else
(14.82)

and
∂ J

∂di
=

∑
m,n

∂ J

∂υmn

∂υmn

∂di
=

∑
n

∂ J

∂υin
yin (14.83)

Similarly to derive the gradient ∇ J
Y we note that

∂υmn

∂yi j
=

{
di m = i ∧ n = j

0 else
(14.84)

and get
∂ J

∂yi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂yi j
= ∂ J

∂υi j
di (14.85)

• Dropout: randomly set λ percentage of values of Y to be zero and scale the rest,
so that the expectation of the sum is not changed:

mi j (λ) ←
{
0 rand (0, 1) ≤ λ
1

1−λ
else

(14.86)

vi j (λ, Y) ← mi j yi j (14.87)

∇ J
Y ← ∇ J

Y +
{

∇ J
n λ = 0

∇ J
n • M else

(14.88)

Note that λ is a given value instead of part of the model. We only need to get the
gradient with regard to Y. If λ = 0 then V = X which is a trivial case. Otherwise it
is equivalent to the ElementTimes node with a randomly set mask M.

• KhatriRaoProduct: column-wise cross product of two matrices X and Y. Must
satisfy X.cols = Y.cols. Useful for constructing tensor networks.
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υ . j (X, Y) ← x.j ⊗ y
.j (14.89)

[
∇ J

X

]
. j

←
[
∇ J

X

]
. j

+
[[

∇ J
n

]
. j

]
X.rows,Y.rows

Y (14.90)

[
∇ J

Y

]
. j

←
[
∇ J

Y

]
. j

+
[[[

∇ J
n

]
. j

]
X.rows,Y.rows

]T

X, (14.91)

where [X]m,n reshapesX to become anm×n matrix. The gradient∇ J
X can be derived

by observing

∂υmn

∂xi j
=

{
yk j n = j ∧ i = m/Y.rows ∧ k = modulus(m, Y.rows)

0 else
(14.92)

and
∂ J

∂xi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂xi j
=

∑
i,k

∂ J

∂υi×y.rows+k, j
yk j . (14.93)

The gradient ∇ J
y can be derived similarly.

• Cos: column-wise cosine distance of twomatricesX andY. Must satisfyX.cols =
Y.cols. The result is a row vector. Frequently used in natural language processing
tasks.

υ . j (X, Y) ← xT
.j y.j∥∥x.j
∥∥ ∥∥y.j

∥∥ (14.94)

[
∇ J

X

]
. j

←
[
∇ J

X

]
. j

+ [∇J
n
]
. j •

[
yi j∥∥x.j
∥∥ ∥∥y.j

∥∥ − xi jυ., j∥∥x.j
∥∥2

]
(14.95)

[
∇ J

Y

]
. j

←
[
∇ J

Y

]
. j

+ [∇J
n
]
. j •

[
xi j∥∥x.j
∥∥ ∥∥y.j

∥∥ − yi jυ., j∥∥y.j
∥∥2

]
. (14.96)

The gradient ∇ J
X can be derived by observing

∂υ.n

∂xi j
=

⎧⎪⎨
⎪⎩

yi j‖x.j‖‖y.j‖ − xi j

(
xT
.j y

.j

)

‖x.j‖3‖y.j‖ n = j

0 else
(14.97)

and
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∂ J

∂xi j
=

∑
n

∂ J

∂υ.n

∂υ.n

∂xi j
= ∂ J

∂υ., j

⎡
⎣ yi j∥∥x. j

∥∥ ∥∥y. j
∥∥ −

xi j

(
xT
.j y.j

)
∥∥x. j

∥∥3 ∥∥y. j
∥∥
⎤
⎦ . (14.98)

= ∂ J

∂υ., j

[
yi j∥∥x. j
∥∥ ∥∥y.j

∥∥ − xi jυ., j∥∥x.j
∥∥2

]
. (14.99)

The gradient ∇ J
y can be derived similarly.

• ClassificationError: compute the total number of columns in which the indexes
of the maximum values disagree. Each column is considered as a sample and δ is
the Kronecker delta. Must satisfy X.cols = Y.cols.

a j (X) ← argmax
i

xi j (14.100)

b j (Y) ← argmax
i

yi j (14.101)

v (X, Y) ←
∑

j

δ
(
a j (X) 
= b j (Y)

)
(14.102)

This node type is only used to compute classification errors during the de-
coding time and is not involved in the model training. For this reason, calling
ComputePartialGradient (b) should just raise an error.

• SquareError: compute the square of Frobenius norm of the differenceX−Y. Must
satisfy X.rows = Y.rows and X.cols = Y.cols.

v (X, Y) ← 1

2
Tr

(
(X − Y) (X − Y)T

)
(14.103)

∇ J
X ← ∇ J

X + ∇J
n (X − Y) (14.104)

∇ J
Y ← ∇ J

Y − ∇ J
n (X − Y) . (14.105)

Note that v is a scalar. The derivation of the gradients is trivial given

∂v

∂X
= X − Y (14.106)

∂v

∂Y
= − (X − Y). (14.107)

• CrossEntropy: compute the sum of cross-entropy computed column-wise (over
samples) where each column of X and Y is a probability distribution. Must satisfy
X.rows = Y.rows and X.cols = Y.cols.

R (Y) ← log (Y) (14.108)

v (X, Y) ← −vec (X) ◦ vec (R (Y)) (14.109)

∇ J
X ← ∇ J

X − ∇ J
n R (Y) (14.110)

∇ J
Y ← ∇ J

Y − ∇ J
n (X � Y) . (14.111)
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Note that v is a scalar. The gradient ∇ J
X can be derived by observing

∂υ

∂xi j
= − log

(
yi j

) = −ri j (Y) (14.112)

and
∂ J

∂xi j
= ∂ J

∂υ

∂υ

∂xi j
= −∂ J

∂υ
ri j (Y) (14.113)

Similarly to derive the gradient ∇ J
Y we note that

∂υ

∂yi j
= − xi j

yi j
(14.114)

and get
∂ J

∂yi j
= ∂ J

∂υ

∂υ

∂yi j
= −∂ J

∂υ

xi j

yi j
. (14.115)

• CrossEntropyWithSoftmax: same as CrossEntropy except that Y contains values
before the softmax operation (i.e., unnormalized).

P (Y) ← Softmax (Y) (14.116)

R (Y) ← log (P (Y)) (14.117)

v (X, Y) ← vec (X) ◦ vec (R (Y)) (14.118)

∇ J
X ← ∇ J

X − ∇ J
n R (Y) (14.119)

∇ J
Y ← ∇ J

Y + ∇ J
n (P (Y) − X) (14.120)

The gradient ∇ J
X is the same as in the CrossEntropy node. To derive the gradient

∇ J
Y we note that

∂υ

∂yi j
= pi j (Y) − xi j (14.121)

and get
∂ J

∂yi j
= ∂ J

∂υ

∂υ

∂yi j
= ∂ J

∂υ

(
pi j (Y) − xi j

)
. (14.122)

14.4.4 Computation Node Types for Computing Statistics

Sometimes, we only want to get some statistics of the input values (either input
features or labels). For example, to normalize the input features, we need to compute
the mean and standard deviation of the input feature. In speech recognition, we
need to compute the frequencies (mean) of the state labels to convert state posterior
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probability to the scaled likelihood as explained in Chap. 6. Unlike other computation
node types we just described, computation node types for computing statistics do not
require a gradient computation function (i.e., this function should not be called for
these types of nodes) because they are not learned and often need to be precomputed
before model training starts. Here, we list the most popular computation node types
in this category.

• Mean: compute the mean of the operand X across the whole training set. When the
computation is finished, it needs to be marked so to avoid recomputation. When a
minibatch of input X is fed in

k ← k + X.cols (14.123)

υ (X) ← 1

k
X1X.cols,1 + k − X.cols

k
υ (X) (14.124)

Note here X.cols is the number of samples in the minibatch.

• InvStdDev: compute the invert standard deviation of the operand X element-wise
across the whole training set. When the computation is finished, it needs to be
marked so to avoid recomputation. In the accumulation step

k ← k + X.cols (14.125)

υ (X) ← 1

k
X1X.cols,1 + k − X.cols

k
υ (X) (14.126)

ω (X) ← 1

k
(X • X) 1 + k − X.cols

k
ω (X) (14.127)

When the end of the training set is reached,

υ ← (ω − (υ • υ))1/2 (14.128)

υ ← 1 � υ. (14.129)

• PerDimMeanVarNorm: compute the normalized operand X using mean m and
invert standard deviation s for each sample. Here, X is matrix whose number of
columns equals to the number of samples in the minibatch and m and s are vectors
that needs to be expanded before element-wise product is applied.

V (X) ← (X−m) •s. (14.130)

14.5 Convolutional Neural Network

A Convolutional neural network (CNN) [1, 2, 5, 6, 8, 17–19, 21, 22] provides shift
invariance over time and space and is critical to achieve state-of-the-art performance
on image recognition. It has also been shown to improve speech recognition accuracy

http://dx.doi.org/10.1007/978-1-4471-5779-3_6
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over pure DNNs on some tasks [1, 2, 8, 21, 22]. To support CNN, we need to
implement several new computation nodes.

• Convolution: convolve element-wise products of a kernel to an image. An example
of a convolution operation is shown in Fig. 14.7, where the input to the convolution
node has three channels (represented by three 3 × 3 matrices) and the output has
two channels (represented by two 2×2 matrices at top). A channel is a view of the
same image. For example, an RGB image can be represented with three channels:
R, G, B. Each channel is of the same size.

There is a kernel for each output and input channel pair. The total number of kernels
equals to the product of the number of input channels Cx and the number of output
channels Cv. In Fig. 14.7 Cx = 3, Cv = 2 and the total number of kernels is 6. Each
kernel Kk	 of input channel k and output channel 	 is a matrix. The kernel moves
along (and thus shared across) the input with strides (or subsampling rate) Sr and Sc

at the vertical (row) and horizontal (column) direction, respectively. For each output
channel 	 and input slice (i, j) (the i th step along the vertical direction and j th step
along the horizontal direction)

υ	i j (K, Y) =
∑

k

vec (Kk	) ◦ vec
(
Yki j

)
, (14.131)

where Yki j has the same size as Kk	.
This evaluation function involves many small matrix operations and can be slow.

Chellapilla et al. [5] proposed a technique to convert all these small matrix operations
to a large matrix product as shown at the bottom of Fig. 14.7. With this trick, all the
kernel parameters are combined into a big kernel matrix W as shown at left bottom
of Fig. 14.7. Note that to allow for the output of the convolution node to be used
by another convolution node, in Fig. 14.7 we have organized the conversion slightly
differently fromwhat proposed byChellapilla et al. [5] by transposing both the kernel
matrix and the input featuresmatrix as well as the order of thematrices in the product.
By doing so, each sample in the output can be represented by Or × Oc columns of
Cv × 1 vectors which can be reshaped to become a single column, where

Or =
{

Ir −Kr
Sr

+ 1 no padding
(Ir −mod(Kr ,2))

Sr
+ 1 zero padding

(14.132)

is the number of rows in the output image, and

Oc =
{

Ic−Kc
Sc

+ 1 no padding
(Ic−mod(Kc,2))

Sc
+ 1 zero padding

(14.133)

is the number of rows in the output image, where Ir and Ic are, respectively, the
number of rows and columns of the input image, Kr and Kc are, respectively,
the number of rows and columns in each kernel. The combined kernel matrix
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14 20 12 24
15 24 17 26

1 0 2 1 1 2
0 1 2 1 2 0

1 1 1 1 0 1
2 2 1 1 1 0

1 2 0 0 2 1 1 2 1
1 1 3 0 3 2 0 1 3
0 2 2 1 1 0 3 3 2

1 1 2 2 1 1 1 1 0 1 1 0 1     2 1    1 14 20   15  24
1 0 0 1 2 1 2 1 1 2 2 0 * 2     0 1    3 =   12 24   17 26

1     1 0    2
1     3 2    2
0     2 0    3
2     1 3    2                     
0     3 1    1                    
3     2 1    0                    
1     2 0    1                    
2     1 1    3                     
0     1 3    3                     
1     3 3    2                    

Output
features

Convolution
kernels

Input
features

Input featureskernel matrix Output features

Traditional
convolution

Matrix
product

Fig. 14.7 Example convolution operations. Top The original convolution operations. Bottom The
same operations represented as a large matrix product. Our matrix organization is different from
what proposed by Chellapilla et al. [5] to allow for stacked convolution operations (Modified from
the figure in Chellapilla et al. [5], permitted to use by Simard)

is of size Cv × (Or × Oc × Cx ), and the packed input feature matrix is of size
(Or × Oc × Cx ) × (Kr × Kc).

With this conversion, the related computations of the convolution node with
operands W, Y become

X (Y) ← Pack (Y) (14.134)

V (W,Y) ← WX (14.135)

∇ J
W ← ∇ J

W + ∇ J
n XT (14.136)

∇ J
X ← WT ∇ J

n (14.137)

∇ J
Y ← ∇ J

Y + Unpack
(
∇ J

X

)
. (14.138)

Note that this technique enables better parallelization with largematrix operations
but introduces additional cost to pack and unpack the matrices. In most conditions,
the gain outweighs the cost. By composing convolution node with plus nodes and
element-wise nonlinear functions,we can addbias andnonlinearity to the convolution
operations.

• MaxPooling: apply the maximum pooling operation to input X inside a window
with size Kr × Kc for each channel. The operation window moves along the input
with strides (or subsampling rate) Sr and Sc at the vertical (row) and horizontal
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(column) direction, respectively. The pooling operation does not change the num-
ber of channels and so Cv = Cx . For each output channel 	 and the (i, j)th input
slice X	i j of size Kr × Kc we have

υ	i j (X) ← max
(
X	i j

)
(14.139)

[
∇ J

X

]
	,im , jn

←

⎧⎪⎨
⎪⎩

[∇ J
X

]
	,im , jn

+ [∇ J
n
]
	,im , jn

(m, n) = arg max m,n x	,im , jn

[∇ J
X

]
	,im , jn

else
(14.140)

where im = i × Sr + m, and jn = j × Sc + n.

• AveragePooling: same as MaxPooling except average instead of maximum is ap-
plied to inputX inside awindowwith size Kr ×Kc for each channel. The operation
window moves along the input with strides (or subsampling rate) Sr and Sc at the
vertical (row) and horizontal (column) direction, respectively. For each output
channel 	 and the (i, j)th input slice X	i j of size Kr × Kc we have

υ	i j (X) ← 1

Kr × Kc

∑
m,n

x	,im , jn (14.141)

[
∇ J

X

]
	i j

←
[
∇ J

X

]
	i j

+ 1

Kr × Kc

[
∇ J

n

]
	i j

, (14.142)

where im = i × Sr + m, and jn = j × Sc + n.

14.6 Recurrent Connections

In the above sections, we assumed that the CN is a DAG. However, when there
are recurrent connections in the CN, this assumption is no longer true. The recurrent
connection can be implemented using aDelay node that retrieves the value λ samples
to the past where each column of Y is a separate sample stored in the ascending order
of time.

υ . j (λ, Y) ← Y.( j−λ) (14.143)[
∇ J

Y

]
. j

←
[
∇ J

Y

]
. j

+
[
∇ J

n

]
. j+λ

. (14.144)

When j − λ < 0 some default values need to be set for Y.( j−λ). The gradient can be
derived by observing

∂υmn

∂yi j
=

{
1 m = i ∧ n = j + λ

0 else
(14.145)

and
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X: InputW(1): Weight

T(1): Times

P(1): Plus

B(1): Weight

S(1): SigmoidW(2): Weight

T(2): Times

P(2): Plus

B(2): Weight

O: Softmax

D: Delay

W(3): WeightT(3): TimesP(3): Plus

Fig. 14.8 An example CN with a delay node. The shaded nodes form a recurrent loop which can
be treated as a composite node

∂ J

∂yi j
=

∑
m,n

∂ J

∂υmn

∂υmn

∂yi j
= ∂ J

∂υi j+λ

. (14.146)

An exampleCN that contains a delay node is shown in Fig. 14.8.Different from the
CN without a directed loop, a CN with a loop cannot be computed for a sequence of
samples as a batch since the next sample’s value depends on the previous samples. A
simple way to do forward computation and backpropagation in a recurrent network is
to unroll all samples in the sequence over time. Once unrolled, the graph is expanded
into a DAG and the forward computation and gradient calculation algorithms we
just discussed can be directly used. This means, however, all computation nodes in
the CN need to be computed sample by sample and this significantly reduces the
potential of parallelization.

There are two approaches to speed up the computation of a CN with directed
loops. In the next two subsections, we will discuss them.

14.6.1 Sample by Sample Processing Only Within Loops

The first approach identifies the loops in the CN and only applies the sample-by-
sample computation for nodes inside the loops. For the rest of the computation nodes,
all samples in the sequence can be computed in parallel as a single matrix operation.
For example, in Fig. 14.8 all the nodes included in the loop of T(3) → P(3) →
S(1) → D → T(3) need to be computed sample by sample. All the rest of the
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nodes can be computed in batches. A popular technique is to identify the strongly
connected components (SCC) in the graph, in which there is a path between each
pair of vertices and adding any edges or vertices would violate this property, using
algorithms such as Tarjan’s strongly connected components algorithm [28].1 Once
the loops are identified, they can be treated as a composite node in the CN and the
CN is reduced to a DAG. All the nodes inside each loop (or composite node) can
be unrolled over time and also reduced to a DAG. For all these DAGs, the forward
computation and backpropagation algorithms we discussed in the previous sections
can be applied. The detailed procedure in determining the forward computation order
in the CN with arbitrary recurrent connections is described in Algorithm14.6. Since
the input to the delay nodes are computed in the past, they can be considered as the
leaf if we only consider one time slice. This makes the order decision inside loops
much easier.

14.6.2 Processing Multiple Utterances Simultaneously

The second approach to speed up the processing in the recurrent CN is to process
multiple sequences at a time. To implement this, we need to organize sequences in
a way that the frames with the same frame id from different sequences are grouped
together as shown in Fig. 14.9. By organizing sequences in this way, we can compute
frames from different sequences in batch when inside a loop and compute all samples
in all utterances in one batch outside loops. For example, in Fig. 14.9 we can compute
four frames together for each time step. If sequences have different lengths, we can
truncate them to the same length and save the final state of the sequences that are not
finished yet. The remaining frames can be grouped with other sequences for further
processing.

14.6.3 Building Arbitrary Recurrent Neural Networks

With the inclusion of delay nodes, we can easily construct complicated recurrent
networks and dynamic systems. For example, the long short term memory (LSTM)
[9, 14] neural network that is widely used to recognize and generate handwritten
characters involves the following operations:

1 Tarjan’s algorithm is favored over others such as Kosaraju’s algorithm [15] since it only requires
one depth-first traverse, has a complexity of O (|V| + |E|), and does not require reversing arcs in
the graph.
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Algorithm 14.6 Forward computation of an arbitrary CN.
1: procedure DecideForwardComputationOrderWithReccurentLoop(G = (V, E))
2: StronglyConnectedComponentsDetection(G, G ′) � G ′ is a DAG of strongly connected

components (SCC)
3: Call DecideForwardComputationOrder on G ′ → order for DAG
4: for v ∈ G, v ∈ V do
5: Set the order of v equal the max order of the SCC V � This guarantee the forward order

of SCC is correct
6: end for
7: for each SCC V in G do
8: Call GetLoopForwardOrder(root of V) → order for each SCC
9: end for
10: return order for DAG and order for each SCC (loop)
11: end procedure
12: procedure GetLoopForwardOrder(root)
13: Treat all the delayNode as leaf and Call DecideForwardComponentionOrder
14: end procedure
15: procedure StronglyConnectedComponentsDetection(G = (V, E), D AG)
16: index = 0, S = empty
17: for v ∈ V do
18: if v.index is undefined then StrongConnectComponents(v, D AG)
19: end if
20: end for
21: end procedure
22: procedure StrongConnectComponent(v, D AG)
23: v.index = index, v.lowlink = index, index = index + 1
24: S.push(v)
25: for (v, w) ∈ E do
26: if w.index is undefined then
27: StrongConnectComponent(w)
28: v.lowlink = min(v.lowlink, w.lowlink)

29: else if w ∈ S then
30: v.lowlink = min(v.lowlink, w.index)

31: end if
32: end for
33: if v.lowlink = v.index then � If v is a root node, pop the stack and generate an SCC
34: start a new strongly connected component
35: repeat
36: w = S.pop()

37: add w to current strongly connected component
38: until w == v
39: Save current strongly connected component to DAG
40: end if
41: end procedure
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t=1 t=2 t=3 t=4 t=5

t=1,...5

Seq 1

Seq 2

Seq 3

Seq 4

Fig. 14.9 Process multiple sequences in a batch. Shown in the figure is an example with four
sequences. Each color represents one sequence. Frames with the same frame id from different
sequences are grouped together and computed in batch. The right matrix is a reshape of the left
matrix

it = σ
(

W(xi)xt + W(hi)ht−1 + W(ci)ct−1 + b(i)
)

(14.147)

ft = σ
(

W(x f )xt + W(h f )ht−1 + W(c f )ct−1 + b( f )
)

(14.148)

ct = ft • ct−1 + it • tanh
(

W(xc)xt + W(hc)ht−1 + b(c)
)

(14.149)

ot = σ
(

W(xo)xt + W(ho)ht−1 + W(co)ct + b(o)
)

(14.150)

ht = ot • tanh (ct ) , (14.151)
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where σ (.) is the logistic sigmoid function, it , ft , ot , ct and ht are vectors with
same size (since there is one and only one of each in every cell) to represent values
at time t of the input gate, forget gate, output gate, cell, cell input activation, and
hidden layer, respectively, W’s are the weight matrices connecting different gates,
and b’s are the corresponding bias vectors. All the weight matrices are full except
the weight matrix W(ci) from the cell to gate vectors which is diagonal. It is obvious
that the whole LSTM can be described as a CN with following node types: Times,
Plus, Sigmoid, Tanh, DiagTimes, ElementTimes and Delay. More specifically, using
these computational nodes, the LSTM can be described as:

H(d) = Delay (H) (14.152)

C(d) = Delay (C) (14.153)

T(1) = Macro2W1b(W(xi), X, W(hi), H(d), b(i)) (14.154)

I = Sigmoid
(

Plus
(

T(1), DiagT imes
(

d(ci), C(d)
)))

(14.155)

T(2) = Macro3W1b
(

W(x f ), X, W(h f ), H(d), W(c f )C(d), b( f )
)
(14.156)

F = Sigmoid
(

T(2)
)

(14.157)

T(3) = Macro2W1b
(

W(xc), X, W(hc), H(d), b(c)
)

(14.158)

T(4) = ElementT ime
(

F, C(d)
)

(14.159)

T(5) = ElementT imes
(

I, T anh
(

T(3)
))

(14.160)

C = Plus
(

T(4), T(5)
)

(14.161)

T(6) = Macro3W1b
(

W(xo), X, W(ho), H(d), W(co)C, b(o)
)

(14.162)

O = Sigmoid
(

T(6)
)

(14.163)

H = ElementT ime (O, T anh (C)) , (14.164)

where we have defined the macro Macro2W1b
(
W(1), I(1), W(2), I(2), b

)
as

S(1) = Plus
(

T imes
(

W(1), I(1)
)

, T imes
(

W(2), I(2)
))

(14.165)

Macro2W1b = Plus
(

S(1), b
)

(14.166)

and macro Macro3W1b
(
W(1), I(1), W(2), I(2), W(3), I(3), b

)
as

S(1) = Macro2W1b
(

W(1), I(1), W(2), I(2), b
)

(14.167)

Macro3W1b = Plus
(

S(1), T imes
(

W(3), I(3)
))

(14.168)
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Using CN, we can easily build arbitrary network architectures to solve different
problems. For example, it will be easy to add a masking layer to reduce noises in the
input features in an otherwise conventional DNN. CN provides the needed tool to
explore new speech recognition architectures andwe believe additional advancement
in the field will attribute at least partially to CN.
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Chapter 15
Summary and Future Directions

Abstract In this chapter, we summarize the book by first listing and analyzing
what we view as major milestone studies in the recent history of developing the
deep learning-based ASR techniques and systems. We describe the motivations of
these studies, the innovations they have engendered, the improvements they have
provided, and the impacts they have generated. In this road map, we will first cover
the historical context in which the DNN technology made inroad into ASR around
2009 resulting from academic and industry collaborations. Then we select seven
main themes in which innovations flourished across-the-board in ASR industry and
academic research after the early debut of DNNs. Finally, our belief is provided on
the current state-of-the-art of speech recognition systems, and we also discuss our
thoughts and analysis on the future research directions.

15.1 Road Map

There are many exciting advancements in the field of automatic speech recognition
(ASR) in the past 5years. However, in this book, we are able to cover only a repre-
sentative subset of these achievements. Constrained by our limited knowledge, we
have selected the topics we believe are useful for the readers to understand these
progresses that were described with much more technical detail in many preceding
chapters of this book.We feel one way to reasonably summarize these advancements
is to provide an outline of major milestone studies achieved historically.

15.1.1 Debut of DNNs for ASR

The application of neural networks on ASR can be dated back to late 1980s. Notable
work includesWaibel et al.’s time delay neural network (TDNN) [49, 93] andMorgan
andBourlard’s artificial neural network (ANN)/hiddenMarkovmodel (HMM)hybrid
system [63, 64].

The resurgence of interest in neural network-based ASR started in The 2009NIPS
Workshop on Deep Learning for Speech Recognition and Related Applications [18],
where Mohamed et al. from University of Toronto presented a primitive version of
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a deep neural network (DNN)1—HMM hybrid system for phone recognition [60].
Detailed error analysis and comparisons of the DNN with other speech recognizers
were carefully conducted at Microsoft Research (MSR) jointly by MSR and Univer-
sity ofToronto researchers and relative strengths andweaknesseswere identifiedprior
to and after theworkshop. See [17] for discussions and reflections on this part of early
studies that were carried out with “a lot of intuitive guesses without much evidence to
support the individual decisions.” In [60], the same type of ANN/HMMhybrid archi-
tecture was adopted as those developed in early 1990s [63, 64] but it used a DNN to
replace the shallowmultilayer perceptron (MLP) often used in the early ANN/HMM
systems. More specifically, the DNN was constructed to model monophone states
and was trained using the frame-level cross-entropy criterion on the conventional
MFCC features. They showed that by just using a deeper model they managed to
achieve a 23.0% phone error rate (PER) on the TIMIT core test set. This result is
significantly better than the 27.7 and 25.6% PER [73] achieved by a monophone
and triphone Gaussian mixture model (GMM)-HMM, respectively, trained with
the maximum likelihood estimation (MLE) criterion, and is also better than 24.8%
PER achieved by a deep, monophone version of generative models of speech [26,
30] developed at MSR but with distinct recognition error patterns (not published).
Although their model performs worse than the triphone GMM-HMM system trained
using the sequence-discriminative training (SDT) criterion, which achieved 21.7%
PER2 on the same task, and was evaluated only on the phone recognition task, we
at MSR noticed its potential because in the past the ANN/HMM hybrid system was
hard to beat the context-dependent (CD)-GMM-HMM system trained with the MLE
criterion and also because the DNN and the deep generative models were observed to
produce very different types of recognition errors with explainable causes based on
aspects of human speech production and perception mechanisms. In the mean time,
collaborations between MSR and University of Toronto researchers which started in
2009 also looked carefully into the use of raw speech features, one of the fundamental
premises of deep learning advocating not to use human-engineered features such as
MFCCs. Deep autoencoders were first explored on speech historically, during 2009–
2010 at MSR for binary feature encoding and bottleneck feature extraction, where
deep architectures were found superior to shallow ones and spectrogram features
found superior to MFCCs [21]. All the above kind of insightful and exciting results
and progress on speech feature extraction, phone recognition, and error analysis,
etc. had never been seen in the speech research history before and have pointed to
high promise and practical value of deep learning. This early progress excited MSR
researchers to devote more resources to pursue ASR research using deep learning
approaches, the DNN approach in particular. A series of studies along this line can
be found in [19, 25].

1 Note that while the model was called deep belief network (DBN) at that time, it is in fact a deep
neural network (DNN) initialized using the DBN pretraining algorithm. See Chaps. 4 and 5 as well
as [25] for discussions on the precise differences between DNNs and DBNs.
2 The best GMM-HMM system can achieve 20.0% PER on the TIMIT core test set [73].

http://dx.doi.org/10.1007/978-1-4471-5779-3_4
http://dx.doi.org/10.1007/978-1-4471-5779-3_5
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Our interest at MSR was to improve large vocabulary speech recognition (LVSR)
for real-world applications. In early 2010, we started to collaborate with the two
student authors of the work [60] to investigate DNN-based ASR techniques.We used
the voice search (VS) dataset described in Sect. 6.2.1 to evaluate our new models.
We first applied the same architecture used by Mohamed et al. [60], which we refer
to as the context-independent (CI)-DNN-HMM, to the LVSR. Similar to the results
on the TIMIT phoneme recognition task, this CI-DNN-HMM, trained with 24h of
data, achieved 37.3% sentence error rate (SER) on the VS test set. This result sits in
between the 39.6 and 36.2% SER achieved with the CD-GMM-HMM trained using
the MLE and SDT criteria, respectively. The performance breakthrough happened
after we adopted the CD-DNN-HMM architecture described in Chap.6 in which the
DNN directly models the tied triphone states (also called senones). The CD-DNN-
HMM based on senones achieved 30.1% SER. It was shown experimentally to cut
errors by 17% over the 36.2% SER obtained with the CD-GMM-HMM trained
using the SDT criterion, and to cut errors by 20% over the 37.3% SER obtained
using the CI-DNN-HMM in a few papers published by Yu et al. [98] and Dahl
et al. [13] . This is the first time the DNN-HMM system was successfully applied to
LVSR tasks. In retrospect, it may be possible that other researchers have also thought
about similar ideas and even have tried variants of it in the past. However, due to the
limited computing power and training data in early days, no one was able to train the
models with the large size that we use today.

As successful as it was in retrospect, the above early work on CD-DNN-HMM
had not drawn as much attention from speech researchers and practitioners at the
time of publications of the studies in 2010 and 2011. This was understandable as the
ANN/HMM hybrid system did not win over the GMM-HMM system in mid-1990s
and was not considered the right way to go. To turn over this belief, researchers were
looking for stronger evidence than that on theMicrosoft internal voice search dataset
which contains up to 48h of training data in those early experiments.

The CD-DNN-HMM work started to show greater impact after Seide et al. of
MSR published their results in September 2011 [79] on applying the same CD-
DNN-HMMs as that reported by Yu et al. [98] and Dahl et al. [13] to the Switchboard
benchmark dataset [34] described in Sect. 6.2.1. This work scaled CD-DNN-HMMs
to 309h of training data and thousands of senones. It demonstrated, quite surprisingly
to many people, that the CD-DNN-HMM trained using the frame cross-entropy
criterion can achieve as low as 16.1% word error rate (WER) on the HUB5’00
evaluation set—a 1/3 cut of error over the 23.6%WER obtained with the CD-GMM-
HMM trained using the SDT criterion. This work also confirmed and clarified the
findings in [13, 14, 98]: the three key ingredients to make CD-DNN-HMM perform
well are: (1) using deep models, (2) modeling senones, and (3) using a contextual
window of features as input. It further demonstrated that realignment in training
DNN-DMMs helps improve recognition accuracy and that pretraining of DNNs
sometimes helps but is not critical. Since then, many ASR research groups shifted
their research focus to CD-DNN-HMM and made significant progresses.

http://dx.doi.org/10.1007/978-1-4471-5779-3_6
http://dx.doi.org/10.1007/978-1-4471-5779-3_6
http://dx.doi.org/10.1007/978-1-4471-5779-3_6
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15.1.2 Speedup of DNN Training and Decoding

Right after the work [79] was published, many companies started to adopt it in
their commercial systems. The first barrier they need to conquer is the decoding
speed. With a naive implementation, it takes 3.89 real time on a single CPU core
just to compute the DNN score. In late 2011, just several months after [79] was
published,Vanhoucke et al. fromGoogle published theirwork onDNNspeedupusing
engineering optimization techniques [90].3 They showed that the DNN evaluation
time can be reduced to 0.21 real time on a single CPU core by using quantization,
SIMD instructions, batching and lazy evaluation—a 20× speedup over the naive
implementation. Their work is a great step ahead since it demonstrated that the CD-
DNN-HMM can be used in real-time commercial systems without penalty on the
decoding speed or throughput.

The second barrier they need to overcome is training speed. Although it has
been shown that the CD-DNN-HMM system trained with 309h of data outperforms
the CD-GMM-HMM system trained with 2,000h of data [79], additional accuracy
improvement can be obtained if the DNN system is trained using the same amount
of data as that used to train CD-GMM-HMMs. To achieve this goal some sort of
parallel training algorithm needs to be developed. At Microsoft, a pipelined GPU
training strategy was proposed and evaluated in 2012. The work [10] done by Chen
et al. demonstrated that a speedup of 3.3 times can be achieved on 4 GPUs with this
approach. Google, on the other hand, adopted the asynchronous stochastic gradient
descent (ASGD) algorithm [50, 65] on the CPU clusters.

A different but notable approach to speeding up DNN training and evaluation
is the low-rank approximation described in Sect. 7.2.3. In 2013, Sainath et al. from
IBM and Xue et al. fromMicrosoft independently proposed to reduce the model size
and training and decoding time by approximating the large weight matrices with the
product of smaller ones [71, 97]. This technique can reduce 2/3 of the decoding time.
Due to its simplicity and effectiveness it has been widely used in commercial ASR
systems.

15.1.3 Sequence Discriminative Training

The exciting results reported in [79] were achieved using the frame-level cross-
entropy training criterion.Many research groups noticed that an obvious and low-risk
way to further improve ASR accuracy is to use the sequence discriminative training
criterion widely adopted for training the state-of-the-art GMM systems.

In fact, back in 2009, before the debut of DNN systems, Brian Kingsbury from
IBM Research already proposed a unified framework to train ANN/HMM hybrid
systems with SDT [46]. Although the ANN/HMM system he tested in his work

3 Microsoft optimized the DNN evaluation in the internal tool using similar techniques slightly
earlier but never published the results.

http://dx.doi.org/10.1007/978-1-4471-5779-3_7
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performs worse than the CD-GMM-HMM system, he did show that the ANN/HMM
system trained with the SDT criterion (achieved a 27.7% WER) performs signifi-
cantly better than that trained with the frame-level cross-entropy criterion (achieved
a 34.0%WER on the same task). Hence, this work did not attract strong attention at
the time since even with the SDT the ANN/HMM system still cannot beat the GMM
system.

In 2010, in parallel with the LVSR work, we at MSR clearly realized the im-
portance of sequence training based on the GMM-HMM experience [37, 99, 103]
and started the work on sequence discriminative training for CI-DNN-HMM for
phone recognition [66]. Unfortunately, we did not find the right approach to control
the overfitting problem by then and thus only observed very small improvement by
using SDT (22.2% PER) over the frame cross-entropy training (22.8% PER)

The breakthrough happened in 2012 when Kingsbury et al. from IBM Research
successfully applied the technique described in Kingsbury’s 2009 work [46] to the
CD-DNN-HMM [45]. Since SDT takes longer time to train than the frame-level
cross-entropy training they exploited the Hessian-free training algorithm [55] on a
CPU cluster to speed up the training. With SDT the CD-DNN-HMM trained on the
SWB 309h training set obtained a WER of 13.3% on the Hub5’00 evaluation set.
It cuts error by relative 17% over the already low 16.1% WER achieved using the
frame-level cross-entropy criterion. Their work demonstrated that SDT can be effec-
tively applied to theCD-DNN-HMMand result in great accuracy improvement.More
importantly, the 13.3% WER achieved using the single pass speaker-independent
CD-DNN-HMM is also much better than theWER of 14.5% achieved using the best
multipass speaker-adaptive GMM system. Thus, there is obviously no reason not to
replace the GMM systems with the DNN systems in the commercial systems given
this result.

However, SDT is tricky and not easy to be implemented correctly. In 2013, the
work done atMSR by Su et al. [86] and the joint work done byVeselỳ et al. fromBrno
University, University of Edinburgh, and Johns Hopkins University [91] proposed
a series of practical techniques for making the SDT effective and robust. These
techniques, including lattice compensation, frame dropping, and F-smoothing, are
now widely used.

15.1.4 Feature Processing

The feature processing pipeline in the conventional GMM systems involves many
steps because the GMMs themselves cannot transform features. In 2011, Seide
et al. conducted research at MSR on the effect of feature engineering techniques
in the CD-DNN-HMM systems [78, 101]. They found that many feature processing
steps, such as HLDA [48] and fMLLR [32], that are important in the GMM systems
and shallow ANN/HMM hybrid systems are less important in the DNN systems.
They explained their results by considering all the hidden layers in the DNN as
a powerful nonlinear feature transformation and the softmax layer as a log-linear
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classifier. The feature transformation and the classifier are jointly optimized. Since
DNNs can take correlated inputs many features that cannot be directly used in the
GMM systems can now be used in the DNN systems. Because DNNs can approx-
imate complicated feature transformation through many layers of nonlinear opera-
tionsmany of the feature processing steps used in theGMMsystemsmay be removed
without sacrificing the accuracy.

In 2012, Mohamed et al. from University of Toronto showed that by using the log
Mel-scale filter bank feature instead of MFCC they can reduce PER from 23.7 to
22.6% on the TIMIT phone recognition task using a two-layer network [61]. Around
the same time Li et al. at Microsoft demonstrated that using log Mel-scale filter bank
features improves the accuracy on LVSR [52]. They also showed that by using log
Mel-scale filter bank features tasks such as mixed-bandwidth speech recognition can
be easily implemented in the CD-DNN-HMM systems. Log Mel-scale filter bank
features are now the standard in most CD-DNN-HMM systems. Deng et al. reported
a series of studies on the theme of backing to the deep learning premise of using
spectrogram-like speech features [19].

The efforts to reduce the feature processing pipeline never ceased. For exam-
ple, the work done at IBM Research by Sainath et al. in 2013 [70] showed that the
CD-DNN-HMM systems can directly take the FFT spectrum as the input and learn
the Mel-scale filters automatically. Most recently, the use of raw time waveform
signals of speech by DNNs (i.e., zero-feature extraction prior to DNN training) was
reported in [89]. The study demonstrates the same advantage of learning truly nonsta-
tionary patterns of the speech signal localized in time across frame boundaries by the
DNN as the earlier waveform-based and HMM-based generative models of speech
[31, 82], but very different kinds of challenges remain to be overcome.

15.1.5 Adaptation

When the CD-DNN-HMM system just showed its effectiveness on the Switchboard
task in 2011, one of the concerns back then was the lack of effective adaptation
techniques, esp. since DNN systems have much more parameters than that in the
conventional ANN/HMM hybrid systems. To address this concern, in 2011 in the
work done at Microsoft Research by Seide et al. the feature discriminative linear
regression (fDLR) adaptation technique was proposed and evaluated on the Switch-
board dataset with small improvement in the accuracy [78].

In 2013, Yu et al. conducted a study at Microsoft [102], showing that by using
Kullback–Leibler divergence (KLD) regularization they can effectively adapt the
CD-DNN-HMM on the short message dictation tasks with 3–20% relative error
reduction over the speaker-independent systemswhen different number of adaptation
utterances are used. Theirwork indicates that adaptation onCD-DNN-HMMsystems
can be important and effective.

Later in the same year and in 2014, a series of adaptation techniques based on a
similar architecturewere developed. In the noise aware training (NaT) [81] developed
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at Microsoft by Seltzer et al., a noise code is estimated and used as part of the
input. In this work, they showed that with NaT they can reduce the WER on the
Aurora4 dataset from 13.4 to 12.4%, beating even the most complicated GMM
system on the same task. In speaker aware training (SaT) [76] developed at IBM by
Saon et al., a speaker code is estimated as the i-vector of the speaker and used as part
of the input. They reported the results on the Switchboard dataset and reduced WER
from 14.1 to 12.4% on the Hub5’00 evaluation set, a 12% error cut. In the speaker
code approach [2, 96] developed at York University by Abdel-Hamid et al., the
speaker code is trained for each speaker jointly with the DNN and used as part of the
input.

15.1.6 Multitask and Transfer Learning

As pointed out in [9, 16, 78, 101] and discussed in Chap.12, each hidden layer in the
DNN can be considered a new representation of the input feature. This interpretation
motivated many studies in sharing the same representation across languages and
modalities. In 2012–2013,4 many groups including Microsoft, IBM, Johns Hopkins
University, University of Edinburgh, and Google reported results on using the shared
hidden-layer architectures for multilingual and cross-lingual ASR [33, 38, 42, 88],
multimodal ASR [41], and multiobjective training of DNNs for speech recognition
[11, 54, 80]. These studies indicated that by training the shared hidden layers with
data frommultiple languages andmodalities orwithmultiple objectives, we can build
DNNs that work better for each language or modality than those trained specifically
for the language or modality. This approach often helps ASR tasks the most for the
languages with very limited training data.

15.1.7 Convolution Neural Networks

Using log Mel-scale filter bank features as the input also opens a door to apply
techniques such as convolution neural networks (CNNs) to exploit the structure in
the features. In 2012, Abdel-Hamid et al. showed for the first time that by using a
CNN along the frequency axis they can normalize speaker differences and further
reduce the PER from 20.7 to 20.0% on the TIMIT phone recognition task [4].

These results were later extended to LVSR in 2013 with improved CNN architec-
tures, pretraining techniques, and pooling strategies in the studies by Abdel-Hamid
et al. [1, 3] and Deng et al. [15] at Microsoft Research and the study by Sainath
et al. [69, 72] at IBM Research. Further studies showed that the CNN helps mostly
for the tasks in which the training set size or data variability is relatively small.

4 Some earlier work such as [77] exploited similar ideas but not on the DNN.

http://dx.doi.org/10.1007/978-1-4471-5779-3_12
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For most other tasks, the relative WER reduction is often in the small range of 2–
3%. We believe as the training set size continues to increase the gap between the
systems with and without CNN will diminish.

15.1.8 Recurrent Neural Networks and LSTM

Since the inroad of the DNN into ASR starting in 2009, perhaps themost notable new
deep architecture is the recurrent neural network (RNN), esp. its long-short-term-
memory (LSTM) version. While the RNN as well as the related nonlinear neural
predictive models saw its early success in small ASR tasks [28, 68], it was not easy
to duplicate due to the intricacy in training, let alone to scale them up for larger ASR
tasks. Learning algorithms for the RNN have been dramatically improved since these
early days, however, and much stronger and practical results have been obtained
recently using the RNN, especially when the bidirectional LSTM architecture is
exploited [35, 36] or when the high-level DNN features are used as inputs to the
RNN [9, 16].

The LSTM was reported to give the lowest PER on the benchmark TIMIT phone
recognition task in 2013 by Grave et al. at University of Toronto [35, 36]. In 2014,
Google researchers published the results using the LSTM on large-scale tasks with
applications to Google Now, voice search, and mobile dictation with excellent
accuracy results [74, 75]. To reduce the model size, the otherwise very large out-
put vectors of LSTM units are linearly projected to smaller-dimensional vectors.
Asynchronous stochastic gradient descent (ASGD) algorithm with truncated back-
propagation through time (BPTT) is performed across hundreds of machines in CPU
clusters. The best accuracy is obtained by optimizing the frame-level cross-entropy
objective function followed by sequence discriminative training. With one LSTM
stacking on top of another, this deep and recurrent LSTM model produced 9.7%
WER on a large voice search task trained with 3 million utterances. This result is
better than 10.7% WER achieved with frame-level cross entropy training criterion
alone. It is also significantly better than the 10.4% WER obtained with the best
DNN-HMM system using rectified linear units. Furthermore, this better accuracy is
achievedwhile the total number of parameters is drastically reduced from 85millions
in theDNN system to 13millions in the LSTM system. Some recent publications also
showed that deep LSTMs are effective in ASR in reverberant mutltisource acoustic
environments, as indicated by the strong results achieved by LSTMs in a recent
ChiME Challenge task involving ASR in such difficult environments [95].

15.1.9 Other Deep Models

A number of other deep learning architectures have been developed for ASR. These
include the deep tensor neural networks [100, 104], deep stacking networks and their
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kernel version [22–24], tensor deep stacking networks [43, 44], recursive percep-
tual models [92], sequential deep belief networks [5], and ensemble deep learning
architectures [20]. However, although these models have superior theoretical and
computational properties over most of the basic deep models discussed above, they
have not been explored with as much depth and scope, and are not mainstream
methods in ASR so far.

15.2 State of the Art and Future Directions

15.2.1 State of the Art—A Brief Analysis

BycombiningCNN,DNN, and i-vector based adaptation techniques IBMresearchers
showed in 2014 that they can reduce the WER on the Switchboard Hub5’00 eval-
uation set to 10.4%. Compared to the best possible WER of 14.5% on the same
evaluation set achieved using the GMM systems, DNN systems cut the error by
30%. This improvement is achieved solely through the acoustic model (AM) im-
provement. Recent advancements in neural network-based language model (LM)
and large-scale n-gram LM can further cut the error by 10–15%. Together the WER
on the Switchboard task can be reduced to below 10%. Also, the LSTM-RNNmodel
developed by Google researchers also demonstrated in 2014 dramatic error reduc-
tion in voice search tasks compared with other methods including those based on the
feedforward DNN.

In fact, in many commercial systems the word (or character) error rates for the
tasks such as mobile short message dictation and voice search are way below 10%.
Some companies are even aiming at reducing the sentence error rate to below 10%.
From the practical usage point of view, we can reasonably regard that deep learning
has largely solved the close-talk single-speaker ASR problem.

As we relax the constraints we impose on the tasks we are working on, however,
we can quickly realize that the ASR systems still perform poorly under the following
conditions even given the recent technology advancements:

• ASR with far field microphones; e.g., when the microphone is backgrounded in a
living room, meeting room, or field video recordings;

• ASR under very noisy conditions; e.g., when loud music is playing and captured
by the microphone;

• ASR with accented speech;
• ASR with multitalker speech or side talks; e.g., in a meeting or in multiparty
chatting;

• ASR with spontaneous speech in which the speech is not fluent, with variable
speed or with emotions;

For these tasks, the WER of the current best systems is often in the range of 20%.
New technological advances or clever engineering are needed to bring the errors
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down much further in order to make ASR useful under these difficult yet practical
and realistic conditions.

15.2.2 Future Directions

We believe the ASR accuracy under some (not all) of the above conditions may
be increased even without substantially new technologies in acoustic modeling for
ASR. For example, by using more advanced microphone array techniques we can
significantly reduce noise and side-talks and thus improve the recognition accuracy
under these conditions. We may also generate or collect more training data for far
field microphones and thus improve the performance when similar microphones are
used.

However, to ultimately solve the ASR problem so that the ASR system’s per-
formance can match or even exceed that of human’s under all conditions,5 new
techniques and paradigms in acoustic modeling are needed. We perceive that the
next-generation ASR systems can be solely described as a dynamic system that
involves many connected components and recurrent feedbacks and can constantly
make predictions, corrections, and adaptation. For example, the future ASR system
will be able to automatically identify multiple talkers in the mixed speech or resolve
speech and noise in noisy speech. The system will then be able to focus on and trace
a specific speaker by ignoring other speakers and noises. This is a cognitive function
of attention that humans effortlessly equipped with yet conspicuously lacking in to-
day’s ASR systems. The future ASR system will also need to be able to learn the key
speech characteristics from the training set and generalize well to unseen speakers,
accents, noisy conditions.

In order to move toward building such new ASR systems, it is highly desirable
to first build powerful tools such as computational network (CN) and computational
network toolkit (CNTK) we described in Chap.14. Such tools would allow large-
scale and systematic experimentation onmanymore advanced deep architectures and
algorithms, some of which are outlined in the preceding section, than the basic DNN
and RNN. Further, as we discussed in the RNN chapter, new learning algorithms
will need to be developed that can integrate the strengths of discriminative dynamic
models (e.g., the RNN) with bottom-up information flow and of generative dynamic
models with top-down information flow while overcoming their respective weak-
nesses. Recent progresses in stochastic and neural variational inference shown to be

5 Under some constrained conditions, ASR systems can already perform better than humans. For
example, in 2008 ASR systems can already beat the human performance on clean digit recognition
with a 0.2% error rate [103]. In 2006, IBM researchers Kristjansson et al. reported their results
on single-channel multitalker speech recognition [47]. Their improved system [12] in 2010 can
achieve 21.6% WER on the challenge task with very constrained language model and closed
speaker set. This result is better than 22.3% WER achieved by humans. In 2014, the DNN-based
system developed at Microsoft Research byWeng et al. achieved aWER of 18.8% [94] on the same
task and generated far less errors than humans did.

http://dx.doi.org/10.1007/978-1-4471-5779-3_14
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effective for learning deep generative models [7, 39, 59, 67] have moved us one step
closer to the desired bottom-up and top-down learning algorithms with multipasses.

We speculate that the next-generation ASR systemsmay also seamlessly integrate
semantic understanding, for example, to constrain the search space and correct se-
mantically inconsistent hypotheses and thus benefit from research work in semantic
understanding. In this direction, one needs to develop better semantic representa-
tions for word sequences, which are the output of ASR systems. Recent advances
in continuous vector-space distributed representations of words and phrases [40, 58,
83–85], also known as word embedding or phrase embedding, have moved us one
step closer to this goal.

Most recently, the concept of word embedding (i.e., with distributed representa-
tions of words) is introduced as an alternative to the traditional, phonetic-state-based
pronunciation model in ASR, giving improvement in ASR accuracy [6]. This exem-
plifies an interesting new approach, based on distributed representations in continu-
ous vector space, to modeling the linguistic symbols as the ASR output. It appears
to be more powerful than several earlier approaches to distributed representations of
word sequences in symbolic vector space—articulatory or phonetic-attribute-based
phonological models [8, 27, 29, 51, 53, 87]. Further research along this direction
may exploitmultiplemodalities—speech acoustics and the associated image, gesture,
and text—all embedded into the same “semantic” space of phonological nature—to
support weakly supervised or even unsupervised learning for ASR.

For a longer term,we believeASR research can benefit from human brain research
projects and research in the areas of representation encoding and learning, recurrent
networks with long-range dependency and conditional state switching, multitask and
unsupervised learning, and prediction-based methods for temporal/sequential infor-
mation processing. As examples, effective computational models of attention and of
phonetic feature encoding in cortical areas of the human auditory system [56, 57] are
expected to help bridge the performance gap between human and computer speech
recognition. Modeling perceptual control and interactions between speaker and
listener has also been proposed to help improve ASR and spoken language pro-
cessing performance and its practical use [62]. These capabilities are so far not reach-
able by current deep learning technology, and require “looking outside” into other
fields such as cognitive science, computational linguistics, knowledge representa-
tion and management, artificial intelligence, neuroscience, and bio-inspired machine
learning.
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