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What is End-to-End
ASR?



Conventional ASR Pipeline
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Conventional ASR Pipeline: AM Training
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Conventional ASR Pipeline: LM Training
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Conventional ASR Pipeline

e Most ASR systems involve separately trained acoustic, pronunciation and
language model components which are trained separately

o Discriminative Sequence Training of AMs does couple these components

e Curating pronunciation lexicon, defining phoneme sets for the particular
language requires expert knowledge, and is time-consuming
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What is "End-to-End”
ASR?
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"A system which
directly maps a

sequence of input "A system which is

acoustic features into trained to optimize
a sequence of criteria that are related
graphemes or words.” to the final evaluation

metric that we are
interested in (typically,
word error rate).”
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Motivation: End-to-End ASR
Typical Speech System

Acoustic Model

Pronunciation
Model

End2End Trained
Verbalizer Sequence-to-Sequence
Recognizer

Language
Model

2nd-Pass
Rescoring

A single end-to-end trained sequence-to-sequence model, which directly outputs
words or graphemes, could greatly simplify the speech recognition pipeline
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Development of
-nd-to-End ASR




Connectionist Temporal Classification (CTC)

e CTC was proposed by [Graves et
al., 2006] as a way to train an
. . L Connectionist Temporal Classification: Labelling Unsegmented
aCOUS‘nC mOdel W|thout reqU||’|ng Sequence Data with Recurrent Neural Networks
frame-level alignments
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e n d -t O-e n d Abstract belling. While these approaches have proved success-

R ful for many problems, they have several drawbacks:
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¢ CD-phonemebased CTCmodels  grimmirmeiy ' SbriifbiEhy
achieve state-of-the art
performance for conventional,
word-level lagged behind ASR [Sak

et al., 2015]
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[Graves et al., 2006] ICML



Connectionist Temporal Classification (CTC)
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CTC allows for training an acoustic model without the need for frame-level
alignments between the acoustics and the transcripts
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Connectionist Temporal Classification (CTC)
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Encoder: Multiple layers of Uni- or Bi-directional RNNs (often LSTMs)




Connectionist Temporal Classification (CTC)
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CTC introduces a special symbol - blank (denoted by B) - and maximizes the total
probability of the label sequence by marginalizing over all possible alignments
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Connectionist Temporal Classification (CTC)
P(yilx)  P(yr|x)
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In a conventional hybrid system, this would correspond to defining the
HMMs corresponding to each unit to consist of a shared initial state
(blank), followed by a separate state(s) for the actual unit
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Connectionist Temporal Classification (CTC)
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e Computing the gradients of the loss requires the computation of the alpha-beta
variables using the forward-backward algorithm [Rabiner, 1989]
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CTC-Based End-to-End ASR

e Graves and Jaitly proposed a
. Towards End-to-End Speech Recognition
system with character-based with Recurrent Neural Networks
CTC which directly output word .
sequences given input speech i s osonTo o0
° U S i n g a n eX _t e r n a I L M W a S Department of Computer Science, University of Toronto, Canada
i m p O r-t a n-t f O r g e-t-ti n g g O o d Abstract ::;So :fl :;;i;tie optimisation tend to outweigh those of prior

This paper presents a speech recognition sys-

tem that directly transcribes audio data with text, While automatic speech recognition has greatly benefited
p e rfo r m a n C e . Re S u It S re p o rt e d without requiring an intermediate phonetic repre- from the introduction of neural networks (Bourlard & Mor-
sentation. The system is based on a combination gan, 1993; Hinton et al., 2012), the networks are at present

by rescoring a baseline system.
e Also proposed minimizing
expected transcription error

[WSJ: 8.7% — 8.2%]
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CTC-Based ASR: Refinements since [Graves & Jaitly, 2014

e LM incorporated into first-pass decoding; easy integration with WFSTs

o [Hannun et al., 2014] [Maas et al., 2015]: Direct first-pass decoding with an LM as opposed to
rescoring as in [Graves & Jaitly, 2014]
o [Miao et al., 2015]: EESEN framework for decoding with WFSTSs, open source toolkit

e Large-scale GPU training; data augmentation; multiple languages
o [Hannun et al., 2014; DeepSpeech] [Amodei et al., 2015; DeepSpeech?2]: Large scale GPU training;
Data Augmentation; Mandarin and English

e Using longer span units: words instead of characters
o [Soltau et al., 2017]: Word-level CTC targets, trained on 125,000 hours of speech. Performance
close to or better than a conventional system, even without using an LM!
o [Audhkhasi et al., 2017]: Direct Acoustics-to-Word Models on Switchboard

e And many others ...
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CTC-Based End-to-End ASR

1.0 Y o LT

plelr)

p(—-|z4)
ST _____ o__hh__________ ____
k(s): oh yeah

CTC produces “spiky” and sparse activations - can sometimes directly read off the
final transcription from the activations even without an LM

Google Reproduced from [Maas et al., 2015] NAACL



CTC-Based End-to-End ASR

#  Method Transcription

Truth yeah i went into the i do not know what you think of fidelity but
(1) HMM-GMM yeah when the i don’t know what you think of fidel it even them
CTC+CLM yeah i went to 1 don’t know what you think of fidelity but um

Truth no no speaking of weather do you carry a altimeter slash barometer
) HMM-GMM no i’m not all being the weather do you uh carry a uh helped emitters last
2) brahms her

CTC+CLM  no no beating of whether do you uh carry a uh a time or less barometer

Truth 1 would ima- well yeah it is i know you are able to stay home with them
(3) HMM-GMM 1 would amount well yeah it is i know um you’re able to stay home with them
CTC+CLM i would ima- well yeah it is i know uh you’re able to stay home with them

Google Reproduced from [Maas et al., 2015] NAACL



CTC-Based End-to-End ASR
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Shortcomings of CTC

e For efficiency, CTC makes an important independence assumption - network
outputs at different frames are conditionally independent

e Obtaining good performance from CTC models requires the use of an external
language model - direct greedy decoding does not perform very well
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Recurrent Neural Network Transducer (RNN-T)

Google

Proposed by Graves et al.,
RNN-T augments a
CTC-based model with a
recurrent LM component
Both components are
trained jointly on the
available acoustic data
As with CTC, the method
does not require aligned
training data.

SPEECH RECOGNITION WITH DEEP RECURRENT NEURAL NETWORKS

Alex Graves, Abdel-rahman Mohamed and Geolffrey Hinton

Department of Computer Science, University of Toronto

ABSTRACT

Recurrent neural networks (RNNs) are a powerful model for
sequential data. End-to-end training methods such as Connec-
tionist Temporal Classification make it possible to train RNNs
for sequence labelling problems where the input-output align-
ment is unknown. The combination of these methods with

RNNSs are inherently deep in time, since their hidden state
is a function of all previous hidden states. The question that
inspired this paper was whether RNNs could also benefit from
depth in space; that is from stacking multiple recurrent hid-
den layers on top of each other, just as feedforward layers are
stacked in conventional deep networks. To answer this ques-

[Graves et al., 2013] ICASSP;
[Graves, 2012] ICML Representation Learning Workshop



Recurrent Neural Network Transducer (RNN-T)
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RNN-T [Graves, 2012] augments CTC encoder with a recurrent neural network LM
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Recurrent Neural Network Transducer (RNN-T)
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Recurrent Neural Network Transducer (RNN-T)
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Recurrent Neural Network Transducer (RNN-T)
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Recurrent Neural Network Transducer (RNN-T)
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Recurrent Neural Network Transducer (RNN-T)
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Recurrent Neural Network Transducer (RNN-T)
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Recurrent Neural Network Transducer (RNN-T)
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Recurrent Neural Network Transducer (RNN-T)

THAT DOESN'T MEAN HE WILL TRY TO BUY MCDERMOTT

ol = =4 4 [\ s B 2 et = § £ R s ,2
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Forward Variables Backward Variables Probabilities

Figure 2. Forward-backward variables during a speech recognition task. The image at the bottom is the input
sequence: a spectrogram of an utterance. The three heat maps above that show the logarithms of the forward variables
(top) backward variables (middle) and their product (bottom) across the output lattice. The text to the left is the target
sequence.

Google Reproduced from [Graves, 2012] ICML Representation Learning Workshop



Recurrent Neural Network Transducer (RNN-T)

Table 1. TIMIT Phoneme Recognition Results. ‘Epochs’ is
the number of passes through the training set before conver-
gence. ‘PER’ is the phoneme error rate on the core test set.

NETWORK WEIGHTS EpPocHS PER

CTC-3L-500H-TANH  3.7M 107 37.6%
CTC-1L-250H 0.8M 82 23.9%
CTC-1L-622H 3.8M 87 23.0%
CTC-2L-250H 2.3M 55 21.0%
CTC-3L-421H-UNI 3.8M 115 19.6%
CTC-3L-250H 3.8M 124 18.6%
CTC-5L-250H 6.8M 150 18.4%
TRANS-3L-250H 4.3M 112 18.3%
PRETRANS-3L-250H 4.3M 144 17.7 %

[Graves et al., 2013] showed promising results on TIMIT phoneme recognition, but
the work did not seem to get as much traction in the field as CTC.

Google Reproduced from [Graves, 2013] ICASSP



Recurrent Neural Network Transducer (RNN-T)

e Intuitively, the prediction network corresponds to the “language model”
component and the encoder corresponds to the “acoustic model” component
o Both components can be initialized from a separately trained CTC-AM and a RNN-LM (which can

be trained on text only data)
o Initialization provides some gains [Rao et al., 2017] but is not critical to get good performance

e Generally speaking, RNN-T always seems to perform better than CTC alone in

our experiments (even when decoded with a separate LM)
o  More on this in a bit when we compare various approaches on a voice search task.

Google



RNN-T: Case St_udy on ~18,000 hour Gooqle Data
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CTC-trained AM, and recurrent LM. Initialization generally improves
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Google

N-T: Case Study on ~18,000 hour Google Data

If graphemes are used as output units, then the model has limited language
modeling context: e.g. errors: “the tortoise and the hair”

Using words as output targets would allow modeling additional context, but
would introduce O0Vs

Intermediate: Use “word pieces” [Schuster & Nakajima, 2012]

Iteratively learn a vocabulary of units from text data.

Start with single graphemes, and train an LM from the data.

lteratively combine units in a greedy manner which improve training perplexity
Continue to combine units until reaching a predefined number of units or perplexity
improvements are below a threshold

o E.g., “tortoise and the hare” — _tor to ise _and _the _hare

O O O O



RNN-T: Case Study on ~18,000 hour Google Data

Layers Pre-trained Training Data Used WER(%)
Units Encoder Decoder Encoder Decoder Acoustic Pronunciation Text Params VS IME
e __RNN-T L ____
I Graphemes 5x700 2x700 no no yes no no 21M 139 84 ,
i Graphemes  _ __ 5x700 _ _2x700_ _ _yes____mno _ ___ yes _ ___._ no_ _ ___ no __2IM _ 132 8.0
Graphemes 8x700 2x700 yes no yes no no 33M 120 69
Graphemes 8x700 2x700 yes no yes yes no 33M 114 6.8
Graphemes 8x700 2x700 yes yes yes yes yes 33M 10.8 6.4
Wordpieces-1k 12x700 2x700 yes yes yes yes yes 55M 99 6.0
Wordpieces-10k  12x700  2x700 yes yes yes yes yes 66M 9.1 2.3
Wordpieces-30k  12x700  2x1000 yes yes yes yes yes 96M 85 52
Baseline
- - - - - yes yes yes 1202M 83 54

Initializing the “encoder” (i.e., acoustic model) helps improve
performance by ~5%.

Google



RNN-T: Case Study on ~18,000 hour Google Data

Layers Pre-trained Training Data Used WER(%)
Units Encoder Decoder Encoder Decoder Acoustic Pronunciation Text Params VS IME
RNN-T
Graphemes 5x700 2x700 no no yes no no 21IM 139 84
Graphemes 5x700 2x700 yes no yes no no 21IM 132 380
_ Graphemes 8x700 _ _ 2x700 _ _ yes _ _ _ 1 no____yes_____mo____1 no _ 33M _ _12.0_ 69 _
I Graphemes 8x700 2x700 yes no yes yes no 33M 114 6.8
: Graphemes 8x700 2x700 yes yes yes yes yes 33M 10.8 64
Wordpieces-1k 12x700 2x700 yes yes yes yes yes 55M 9.9 6.0
Wordpieces-10k  12x700 2x700 yes yes yes yes yes 66M 9.1 3.5
Wordpieces-30k  12x700  2x1000 yes yes yes yes yes 96M 8.5 5.2
Baseline
- - - - - yes yes yes 1202M 83 54

Initializing the “prediction network” (i.e., prediction network)
helps improve performance by ~5%.

Google



RNN-T: Case Study on ~18,000 hour Google Data

Layers Pre-trained Training Data Used WER(%)
Units Encoder Decoder Encoder Decoder Acoustic Pronunciation Text Params VS IME
RNN-T
Graphemes 5x700 2x700 no no yes no no 21M 139 84
Graphemes 5x700 2x700 yes no yes no no 21M 132 8.0
Graphemes 8x700 2x700 yes no yes no no 33M 120 69
Graphemes 8x700 2x700 yes no yes yes no 33M 114 6.8
Graphemes 8x700 2x700 yes yes yes yes yes 33M 10.8 6.4
Wordpieces-1k 12x700  2x700 yes yes yes yes yes 55M 99 6.0
- —Wordpigces= 10k _ 12x700_ _ 2x70Q0 _ _ yes _ _ _yes_ . __yes . ___ yes_ ___yes__66M__91__33_
. Wordpieces-30k  12x700  2x1000 yes yes yes yes yes 96M 85 52
: Baseline :
| _- - - - - yes yes yes 1202M 83 54 !

The RNN-T model with ~96M parameters can match the performance of a
conventional sequence-trained CD-phone based CTC model with a large first pass LM

Google




Attention-based Encoder-Decoder Models

Google

Attention-based Encoder-Decoder
Models emerged first in the
context of neural machine
translation.

Were first applied to ASR by [Chan
et al., 2015] [Chorowski et al.,
2015]

Listen, Attend and Spell

William Chan Navdeep Jaitly, Quoc V. Le, Oriol Vinyals
Carnegie Mellon University Google Brain
williamchan@cmu.edu {ndjaitly, qvl,vinyals}@google.com

[Chan et al., 2015]

Attention-Based Models for Speech Recognition

Jan Chorowski Dzmitry Bahdanau
University of Wroctaw, Poland Jacobs University Bremen, Germany
jan.chorowski@ii.uni.wroc.pl

Dmitriy Serdyuk Kyunghyun Cho Yoshua Bengio
Université de Montréal Université de Montréal Université de Montréal
CIFAR Senior Fellow

[Chorowski et al., 2015]



Attention-based Encoder-Decoder Models

P(Yulyu—l, e ,yO,X)
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Google

Encoder (analogous to AM):

(@)

Transforms input speech into higher-level representation

Attention (alignment model):

O

Identifies encoded frames that are relevant to producing
current output

Decoder (analogous to PM, LM):

(@)

Operates autoregressively by predicting each output
token as a function of the previous predictions



Grapheme characters y; are
modelled by the
CharacterDistribution

Attention-Based Models

P(Yulyu—l, e ,y(),X)
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Encoder
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Google Reproduced from [Chan et al., 2015]



Grapheme characters y; are
modelled by the
CharacterDistribution

Attention-Based Models

P(Yulyu—l, e ,y(),X)
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Google Reproduced from [Chan et al., 2015]



Attention-Based Models

Attention module computes a
P(yulyu—t, - 40,X) similarity score between the decoder
T and each frame of the encoder

Softmax ’
. att enc
T ey = score(hy, 1, hy™)
DeCOdfr /// GXP(Bu,t>
o Cu /// Odut —
AttentionT (:\ | Zg’;l eXp(euﬂf/)
he, ] h™ "~
1 Encoder The £ enLe
T T Tho Cu = Z au,tht
X1 XT IS t=1
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Attention-Based Models

P(Yulyu—l, e ,y(),X)

T
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Attention
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Google

Encoder
11

Dot-Product Attention [Chan et al., 2015]

ut = (SWHL)), v (V™))

Additive Attention [Chorowski et al., 2015]

eyt = w! tanh(Wh™, + Vh§C 4 p)



Grapheme characters y; are
modelled by the
CharacterDistribution

Attention-Based Models
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Google Reproduced from [Chan et al., 2015]



Attention-based Models

P(a|<sos>,x) = 0.01
P(b|<sos>, x) 0.01
P(c|<sos>,x) = 0.92

Attention mechanism summarizes encoder
features relevant to predict next label

Output: c Softmax
<sos> Decoder
\
Attention
/
Encoder
Google
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Attention-based Models

Labels from previous step are fed into
decoder at the next step to predict

P(yu|yu—1, T ,yO,X)

P(alc,<sos>,x) = 0.95
P(b|c,<sos>,x) = 0.01
P(c|c,<sos>,x) = 0.01
Output: ca Softmax
c — Decoder
Attention
Encoder

Google
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Attention-based Models

Labels from previous step are fed into
decoder at the next step to predict

P(yu|yu—1, T ,yO,X)

P(ala,c,<sos>,x) = 0.01
P(bla,c,<sos>,x) = 0.08
P(tla,c,<sos>,x) = 0.89

Output: cat Softmax
a — Decoder
Attention
Encoder
Google
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Attention-based Models

P(alt,a,c,<sos>,x) = 0.01
P(blt,a,c,<sos>,x) = 0.01

P(<eos>|t,a,c,<sos>,x) = 0.96

Output: cat Softmax

a — Decoder

\

Attention

/

Encoder

Google

Process terminates when the model predicts
<eos> which denotes end of sentence.
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Comparing Various
Approaches:

Case-Study on a 12,500
hour Google Task



Comparing Various End-to-End Approaches

Google

Compare various
sequence-to-sequence
models head-to-head,
trained on same data, to
understand how these
approaches compare to
each other

Evaluated on a large-scale
12,500 hour Google Voice
Search Task

INTERSPEECH 2017
August 20-24, 2017, Stockholm, Sweden

A Comparison of Sequence-to-Sequence Models for Speech Recognition

Rohit Prabhavalkar®, Kanishka Rao', Tara N. Sainath', Bo Li', Leif Johnson', Navdeep Jaitly*!
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Abstract was shown to outperform a state-of-the-art CD-phoneme base-
line on a YouTube video captioning task. The basic CTC model
was extended by Graves [3] to include a separate recurrent lan-
guage model component, in a model referred to as the recur-
rent neural network (RNN) transducer. Although this model has

In this work, we conduct a detailed evaluation of various all-
neural, end-to-end trained, sequence-to-sequence models ap-
plied to the task of speech recognition. Notably, each of these

[Prabhavalkar et al., 2017]



Experimental Setup: Model Configuration

e Baseline

State-of-the-art CD-Phoneme model: 5x700 BLSTM; ~8000 CD-Phonemes
CTC-training followed by sMBR discriminative sequence training
Decoded with large 5-gram LM in first pass

Second pass rescoring with much larger 5-gram LM in second pass
Lexicon of millions of words of expert curated pronunciations

o O O O O

e Sequence-to-Sequence Models

o  Trained to output graphemes: [a-z], [0-9], <space>, and punctuation
o Models are evaluated using beam search (Keep Top 15 Hyps at Each Step)
o Models are not decoded or rescored with an external language model, or a pronunciation model

Google



Experimental Setup: Data

e Training Set

o ~15M Utterances (~12,500 hrs) of anonymized utterances from Google Voice Search Traffic
o  Multi-style Training: Artificially distorted using room simulator by adding noise samples extracted
from YouTube videos and environmental recordings of daily events

e Evaluation Sets

o Dictation: ~13K utterances (~124K words) open-ended dictation
o VoiceSearch: ~12.9K utterances (~63K words) of voice-search queries

Google



Results

Clean

Model
Dictation = VoiceSearch

Baseline Uni. Context

Dependent Phones (CDP) 6.4 9.9
Baseline BiDi. CDP 5.4 8.6
CTC-grapheme 394 53 4

Decoding CTC-grapheme models without an LM performs poorly

Google




Results

Clean
Model
Dictation VoiceSearch
Baseline Uni. CDP 6.4 9.9
Baseline BiDi. CDP 54 8.6
CTC-grapheme 39.4 53.4
RNN-T 6.6 12.8

RNN-T which augments CTC with a neural LM significantly improves
performance, and is close to the unidirectional baseline

Google




Results

Clean
Model
Dictation VoiceSearch

Baseline Uni. CDP 6.4 9.9
Baseline BiDi. CDP 54 8.6
CTC-grapheme 39.4 53.4
RNN-T 6.6 12.8
Attention-based Model 6.6 11.7

Attention-based model performs the best, but cannot be used for streaming
speech recognition

Google




Comparison of End-to-End Approaches [Battenberg et al., 2017]

Architecture SWBD CH Model | Dev Test
WER | WER
CTC [4]
B Iterated-CTC [29] 11.3 18.7 Greedy decoding 23.03 -
= BLSTM +LFMMI[21] 8.5 153 Beam search + LM (beam=2000) | 15.9 16.44
= LACE+LF MMI 4 28] 8.3 14.8
£ Dilated convolutions [25] 77 | 145 RNN-Transducer
CTC + Gram-CTC [17] 73 14.7 Greedy decoding 18.99 -
BLSTM + Feature fusion[23] 72 12.7 Beam search (beam=32) 17.41 -
_________________________ ; + LM rescoring 156  16.50
: CTC [17] 9.0 17.7 | :
; RNN-Transducer I Attention _
»1  Beam Search NO LM 8.5 164 | Greedy decoding 22.67 3
: Attention I + Length-norm weight 19:5 -
I Beam Search NO LM 8.6 17.8 1 + Coverage cost 18.9 -
| BeamSearch+IM | 86 | 17.8 ! + LM rescoring 16.0 16.48
Switchboard DeepSpeech

Similar conclusions were reported by [Battenberg et al., 2017] on Switchboard.
RNN-T without an LM is consistently better than CTC with an LM.

Google




Combining Approaches

Google

Various end-to-end approaches can be successfully combined to improve the
overall system

CTC and Attention-based models can be combined in a multi-task learning
framework [Kim et al., 2017]

RNN-T can be augmented with an attention module which can

o condition the language model component on the acoustics [Prabhavalkar et al., 2017] or,
o be used to bias the decoder towards particular items of interest [He et al., 2017]

An attention model can be augmented with a secondary attention module which
can bias towards an arbitrary number of phrases of interest [Pundak et al., 2018]
(will be discussed in more detail in a few slides)



Turning Research
Into Reality



Moving From Research To Reality

e In order to use an end-to-end model for real-world applications, we need

O Performance that matches that of a conventional model

m Including MWER Training
m Including External Language Model
m More details in [Chiu et al., 2018]

O  Model must incorporate contextual biasing to long-tail words

O  Model must be streaming


https://storage.googleapis.com/pub-tools-public-publication-data/pdf/74a8df45b9583e193e6cf8e156dfba9b73c33a0c.pdf

MWER Training
[Prabhavalkar et al., 2018]



MWER Training of LAS Models: Motivation

e Attention-based Sequence-to-Sequence models are typically trained by
optimizing cross entropy loss (i.e., maximizing log-likelihood of the training

data)
L+1

Lcg = ;: S: —log P(yu|Yu—1,""" Y0 = (sos),x)

(x,y*) u=1

e Training criterion does not match metric of interest: Word Error Rate
e (Goal: Optimize a loss that minimizes or is correlated with minimizing word
error rate



MWER Training of LAS Models: Motivation

e Proposal: Minimize Expected Word Error Rate (MWER)

o Inthe context of conventional ASR system, for Neural Network Acoustic Models
m State-level Minimum Bayes Risk (sMBR) [Kingsbury, 2009]
m  Word-level edit-based Minimum Bayes Risk (EMBR) [Shannon, 2017]

o Inthe context of end-to-end models
m Connectionist Temporal Classification (CTC) [Graves and Jaitly, 2014]
m  Recurrent Neural Aligner (RNA) [Sak et al., 2017]: Applies word-level EMBR to RNA
m Machine Translation:
e REINFORCE [Ranzato et al., 2016]
e Beam Search Optimization [Wiseman and Rush, 2016]
e Actor-Critic [Bahdanau et al., 2017]



MWER Training of LAS Models

Luen(x,y") =EW(y,y")] =) _ Pyx)W(y,y")

Number of Word Errors

Minimizing expected WER directly is intractable since it involves a summation over
all possible label sequences




MWER Training:
Approximating expectation
by sampling from the model



Approximation By Sampling [Shannon, 17]

LWCI‘I‘(Xy y*) — E Z P(Y|X y Y )
Sample *\ 1 *
~ Ewerrp (X7 Yy ) — N Z W(Yz, y )
yi~P(y|x)

Approximate expectation using samples.




Approximation By Sampling [Shannon, 17]

P(yulyu—l’ e ,yO,x)

T C

Softmax P(a|<sos>,x) = 0.01
“hdec P(b|<sos>,x) = 0.01
¢ P(c|<sos>,x) = 0.81 < Sample c
Decoder P(d|<sos>,x) = 0.02
<sos> | e, P(e|<sos>,x) = 0.01
P(f|<sos>,x) = 0.08
Attention
ne, } b
Encoder
)Il XTT

Drawing samples is particularly easy for locally-normalized models such as LAS!




Approximation By Sampling [Shannon, 17]

P(yulyu—l’ e ,yO,x)

!

ca

Softmax P(alc,<sos>,x) = 0.61 |~— sSample a
A e P(blc,<sos>,x) = 0.02
v P(c|c,<sos>,x) = 0.01
Decoder P(d|c,<sos>,x) = 0.00
c 1 Acu P(elc,<sos>,x) = 0.260
P(f|lc,<sos>,x) = 0.00
Attention
p, } 1w
Encoder
[

Drawing samples is particularly easy for locally-normalized models such as LAS!




Approximation By Sampling [Shannon, 17]

P(yulyu—la e ,yO,x)

T cab
Softmax P(ala,c,<sos>,x) = 0.01
B e P(bla,c,<sos>,x) = 0.41 |—— Sample b
v P(cla,c,<sos>,x) = 0.01
Decoder P(d|a,c,<sos>,x) = 0.51
a 0 Acu P(ela,c,<sos>,x) = 0.00
P(fla,c,<sos>,x) = 0.00
Attention
A A p.enc
W, i
Encoder
[

Drawing samples is particularly easy for locally-normalized models such as LAS!




Approximation By Sampling [Shannon, 17]

P(yulyu—la e ,yO,x)

!

cabs in calgary <eos>

Softmax
A hffc
Decoder
|y A Ac“
Attention
. h‘;‘t_l A Ahenc
Encoder
-
X1 X7

P(aly, ..
P(bly,..

P (<eos>|y, ...

.,c,<sos>,x) = 0.00
.,C,<sos>,x) = 0.00

,c,<sos>,x)=0.98

Sample <eos>

Drawing samples is particularly easy for locally-normalized models such as LAS!




Approximation By Sampling [Shannon, 17]

Vi (x,5%) =Y Pylx) W(y,y*) — EDV(y,y*)]] V log P(y|x)
y

1

~~ D Wy - WIVieg Pylx)  (6)
yi~P(y|x)

Gradient itself is an expectation, which can be approximated using samples!




Approximation By Sampling [Shannon, 17]

Vi (x,y%) = Y P(ylx) W(y,y*) —EW(y,y")]] Vlog P(y|x)

~+ Y | Wiy - WV Py ©)

N yi~P(y|x) /

Increase the probability of sequences which have lower than
average number of word errors!




Approximation By Sampling [Shannon, 17]

CSample _ Z E\S;vaer;lrple (X, y*) \ »CCE

(x,¥*)

Interpolate with CE-loss to stabilize training.
F-smoothing or H-criterion [Su et al., 2013]




Approximation By Sampling [Shannon, 17]

15 +N=4 -N=8 - N=16 126 BN e
1.4 |\
12.25
1.3
w
S 12 < 12
L‘I._.l NP
= 1.1 %11.75
§ 1.0 = 115
0.9
08 11.25
0 0.25 05 0.75 1 0 0.25 0.5 0.75 1
Training Epochs Training Epochs

e Why doesn't the sampling-based approximation “work™?
o Mismatch between decoding process during training (sampling) and decoding criterion (beam
search) which focuses heavily on top hypotheses at each step [Kim and Rush, 2016]
o In[Shannon, 17], paths are sampled from the lattice which corresponds to the most likely
hypotheses, not from the space of all word sequences



MWER Training:
Approximating expectation
using decoded N-Best List



Approximation using N-Best List [Stolcke+,97][Povey,03]

Loer(x,5") = EW(y,y") ZP yx)W(y,y")

Lay )= > Plyix) [Wyy) - W]

yi EBeam(x,N)

D(~r. _ P(yilx)
P(y:|x) = > s, 1) T )

Assume that probability distribution is concentrated on top-N hypotheses




Approximation using N-Best List [Stolcke+,97][Povey,03]

11.8 e N=4 « N=8 « N=16
11.6
11.4 |\
11.2 1\

0.0 0.5 1.0 1.5 2.0
Training Epochs



Approximation using N-Best List [Stolcke+,97][Povey,03]

11.6 | & A=0 * A=0.071 » A=0.1
11.4 |

\
M2 AN [
£ 11 |s

% 10 8 . Nbest Z Egelirest
= 10.6 | ve pee (63™)

0 1 2 3 4 <
Training Epochs

Impact of interpolating MWER loss with CE loss during training.

) + ALcE



Results: WER on Voice-Search Test Set

Uni-Directional

Bi-Directional

Model Encoder Encoder
Baseline 8.1 7.2
+MWER Training 7.5 (7.4%) 6.9 (4.2%)

Results after direct decoding (beam size=8)

81



Results: WER on Voice-Search Test Set

Model

Uni-Directional

Bi-Directional

Encoder Encoder
Baseline 8.1 7.2
+MWER Training 7.5 (7.4%) 6.9 (4.2%)

Model + Second-Pass

Uni-Directional

Bi-Directional

Rescoring Encoder Encoder
Baseline 7.3 6.6
+MWER Training 6.7 (8.2%) 6.2 (6.1%)

Results after N-best rescoring with Second-pass LM

82



MWER: Additional Comments

e Since [Prabhavalkar et al., 2018] we have repeated the experiments with
MWER training on a number of models including RNN-T [Graves et al., 2013]
and other streaming attention-based models such as MoChA [Chiu and Raffel,
2017] and the Neural Transducer [Jaitly et al., 2016]

e |n all cases we have observed between 8% to 20% relative WER reduction

e Implementing MWER requires the ability to decode N-best hypotheses from
the model which can be somewhat computationally expensive



Results: LAS Model on Librispeech (960 hour task)

Model Dev DevOther Test TestOther
CE Baseline 5.8 16.1 6.2 16.4
MWER 5.3 (-8.8%) 15.2 (-5.7%) 5.7 (-8.4%) 15.4 (-6.0%)

Librispeech models trained on full 960 hour training data, with 16K
word piece targets. Models are evaluated without an LM.




Language Model



Motivation #1

Google

Reference

LAS model output

What language is built into
electrical circuitry of a
computer?

what language is built into
electrical circuit tree of a
computer

Leona Lewis believe

vienna lewis believe

Suns-Timberwolves score

sun's timberwolves score

Some Voice Search errors appear to be fixable with a good language model

trained on more text-only data.




Motivation #2

The LAS model requires audio-text pairs: we have only 15M of these
Our production LM is trained on billions of words of text-only data
How can we look at incorporating a larger LM into our LAS model?
More details can be found in [Kannan et al., 2018]

Google


https://arxiv.org/abs/1712.01996

Shallow fusion

e Log-linear interpolation between language model and seq2seq model:

y" = argmaxlogp(y|z) + Alogprm(y)
y

Typically only performed at inference time
Language model is trained ahead of time and fixed
LM can be either n-gram (FST) or RNN.

Analogous to 1st pass rescoring.

[Chorowski and Jaitly, 2017]. [Kannan et al., 2018].

Google


https://arxiv.org/abs/1612.02695
https://arxiv.org/abs/1712.01996

Shallow fusion

Google
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Baseline LAS Model

Top k partial hypotheses

is the birch khalifa
Encoded LAS is the bert khalifa
utterance decoder is the bird's khalifa

is the burj khalifa
is the birdskaleafa
is the bird khalifa

Baseline LAS model relies on LM learned from train data

Google



Baseline LAS Model

Google

Encoded
utterance

LAS
decoder

Top k partial hypotheses

is
is
is
is
is
is

the
the
the
the
the
the

birch khalifa
bert khalifa
bird's khalifa
burj khalifa

birdskaleafa
bird khalifa

Unseen or rare phrases
may be assigned low
probability.




Integration with FST LM in T1st pass

Compose production LM (G) with a
speller (S) to create LM over

graphemes or wordpieces
Partial Partial
[Projlnput(S o G) Hypotheses in Hypotheses in
beam beam
is the bi :> is the bur
Encoded LAS is the be is the bir
utterance decoder is the bu is the bea

Interpolate model posteriors with LM-score at each step of next
label prediction

Google



Integration with FST LM in T1st pass

Compose production LM (G) with a
speller (S) to create LM over
graphemes or wordpieces

[Projlnput(S o G)

Encoded
utterance

Google

{

LAS
decoder

Final Beam Search
Results

. . e
the burj khalifa
the bird khalifa
is the bird's khalifa
is the birch khalifa
is the bert khalifa
is the birdskaleafa « __

Recognized proper noun
moves to top of ranking

Out of vocabulary
word moves to bottom




Results with FST LM

Google

System Dev WER Test WER LM Size
Baseline LAS 9.2% 7.7% 0GB
LAS + FST LM in 1st pass 8.8% 7.4% 2 GB

Decoding with FST 1st pass production LMs
into LAS system provides small improvement




Examples of LM wins

Google

Reference

Top 1 without LM

Top 1 with LM

Rare words

achondroplasia

acondra placia

achondroplasia

Proper nouns

st. isaac jogues mass
schedule

st isaac jog's mass
schedule

st isaac jogues mass
schedule

what causes high latency
on a wi-fi connection?

what causes highlight
and sienna wi-fi
connection

what causes high latency
on a wi-fi connection

Decoding with LM can correct errors early in decoding.
In examples above, correct hypothesis does not appear in N-best without LM, so
would not be possible to correct in second-pass with ProdLM.




Examples of LM losses

Reference

Out of vocab urgent important unurgent

terms unimportant
(s:),\elzgcs’:;gesof mathfunbook.com product

0oV of a power property

Grammatically
incorrect

tonight
language

why you not listening to me

Top 1 without LM

urgent important unurgent
unimportant

mathfunbook.com product
of a power property

why you not listening to me

tonight

Top 1 with LM

urgent important un urgent
unimportant

math funbook com product
of a power property

why are you not listening to

me tonight

LAS model can actually output words it has never seen before.
Decoding with a language model removes this ability, costing about 0.2% absolute WER.

Google




Alternative: integrate with RNN LM in Tst pass

Train an RNN LM on billions of text
queries. Can train directly at

graphemes or wordpiece level.
Partial Partial
[ RNN LM Hypotheses in Hypotheses in
beam beam
is the bi —> is the bur
Encoded 4[ LAS is the be is the bir
utterance decoder is the bu is the bea

RNN LM can achieve lower perplexity than n-gram LM and
does not suffer from OOV problem.

Google



Results with RNN-LM

Google

System Dev WER Test WER | LM Size
Baseline LAS 9.2% 7.7% 0GB
LAS + FST LM in 1st pass 8.8% 7.4% 2 GB
LAS + RNN LM in 1st pass 8.4% 7.0% 1GB

Decoding with RNN LM provides greater improvement at
half the size!




Extending LAS with an LM

e Listen, Attend and Spell [Chan et al., 2015]
e How to incorporate an LM?
o Shallow fusion [Kannan et al., 2018]
m LM is applied on output
o Deep fusion [Gulcehre et al., 2015]
m Assumes LM is fixed
o Cold fusion [Sriram et al., 2017]
m Simple interface between a deep Im and the
encoder
m Allows to swap in task-specific LMs
e In these experiments, fusion is used during the beam
search rather than n-best rescoring.

Google

|

LM

Shallow fusion

LM

Deep/Cold fusion

training X


https://cs.corp.google.com/piper///depot/google3/experimental/users/anjuli/papers/icassp2018/lm/main.pdf
https://arxiv.org/pdf/1503.03535.pdf
https://arxiv.org/pdf/1708.06426.pdf

Comparison of Fusion Results

Google

Shallow Fusion still seems to perform the best

Full comparison in [Toshniwal, 2018]

System Voice Dictation
Search

Baseline LAS 5.6 4.0

Shallow Fusion 5.3 3.7

Deep Fusion 5.5 4.1

Cold Fusion 5.3 3.9



https://arxiv.org/abs/1807.10857

Handling Long Tail with Biasing



What is “Biasing"?

Google

“An attempt to adapt the priors
baked into the speech models
to better model information
gained between training and
inference (aka context).”



Why |s Biasing Important

Google

Biasing can improve WER in domains by more than 10% relative

Test Set WER, No Biasing WER, Biasing
Contacts 15.0 2.8

Numeric 11.0 4.7
Yes-No-Cancel 18.8 10.4



https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43819.pdf

How To Bias EZ2E Models

e Two options for biasing
o Bias externally
o Biasing within the model

e Paper reference [Pundak et al., 2018]

e Inthese experiments, we will evaluate on the following test sets
o Contacts - “call Joe Doe, send a message to Jason Dean”
o Songs - “play Lady Gaga, play songs from Jason Mraz"
o  Third Party - “text Jeanne, text John”

Google


https://arxiv.org/abs/1808.02480

(1) Biasing - Shallow Fusion

e General equation for shallow fusion during beam search

y* = argmaxlog P(y]Z) + Alog Pc (%)

7 N

E2E Model Biasing FST

e Assumptions (for now)
e Biasing is done at test time only
e Tune interpolation weight A per task

Google



Biasing - Where to Apply Scores”?

e Best to apply to every unit (E3)

Experiment | Method (Grapheme) WER -
Songs
EO No Bias (LAS) 20.9
E1 LAS + End of Word Bias 19
E2 LAS + Beginning of Word Bias 16.5
E3 LAS + Every Subword Unit w/ 13.4
Subtractive Cost Bias

Google

(@) End of Word Bias

O-= ===

b) Beginning of Word Bias

0 =1 )==a]

c) All Subword-Unit with Subtractive Cost Bias
c:c/-0.33

o
&
&
-

| <cpsilon>:<epsilon>/0.33
<epsilon>:<epsilon>/0.66



Improving Biasing Further

e Biasing FST should be applied before pruning the beam candidates, not
rescoring a pruned beam (E4)
e Biasing at the WPM level is more effective than grapheme (E5)

Experiment Method (Grapheme) WER -
Songs

EO No Bias (LAS) 20.9

E3 Grapheme Biasing 13.4

E4 Biasing Before Pruning 9.4

E5 4K Word Piece Model LAS Biasing 6.9

Google



Prefixes & Suffixes

Prefix FST e Since E2E model cannot predict
1-cal ° 3:3CONTACT $CONTACT, we prebuild
2:text 3-$CONTACT individual FSTs into one.

Combined FST

Golan:Golan

Context FST

@ <epsilon><CONTACT>

Tara:Tara
Rohit:Rohit

<epsilon>:</CONTACT> =@

Suffix FST

0 3:$CONTACT 1 10:tomorrow
9:today

Google




Prefixes & Suffixes

Google

Using this makes a large difference for biasing

Experiment | Method (Grapheme) WER - Songs
EO No Bias (LAS) 20.9

E5 4K Word Piece Model LAS Biasing | 6.9

EG +  Prefix and Suffix 5.6




Shallow Fusion Biasing Summary

Google

Biasing E2E Models similar quality to conventional model

Method CONTACTS | Songs THIRD PARTY
Conventional Model No Biasing 36.1 26.5 -
Conventional Model Biasing 10.0 3.8 -

LAS No Biasing 26.9 16.8 10.5

LAS + Shallow Fusion, WPM 4K 7.1 5.6 3.9




(2) Biased LAS Model (CLAS)

e Fixed-length embedding of bias
phrases

e Attention over the embeddings,
producing a bias-dependent per-step
context vector

e Attention also includes a N/A option -
don't apply bias

Google

the grey chicken</bias> jumps

T

Si

Decoder

Si

Encoder

Biaser

B1 =grey chicken
B2 =blue dog



The Biaser

e The Biaser embeds each phrase into a fixed length vector
o — Last state ofan LSTM
e Embedding happens once per bias phrase (possibly offline)

o Cheap computation
e Attention is then computed over the set of embeddings

NA

i

D O G

Google

h 3



P(yt‘yt—lw"ay();m) P(yt|yt—1a~-->yo§33§z)

T T

Softmax Softmax
Decoder — d; Decoder —> d, d;
Yi—1 T cy Y T cy CfT
Attention Attention Attention
L e
Tar, | Audio @, | Audio | di,
Encoder Encoder
Ti TK L1 LK

Google (a.) LAS Model (b.)BLAS Model



Prior work: Keyword spotting with
RNNT

e “Streaming Small-Footprint Keyword Spotting using
Sequence-to-Sequence Models” [He et al., 2017]

CTC with phoneme LM with <eow>
- = RNNT phoneme with <eow>
+++« RNNT phoneme with <eow> with keyword biasing

False Reject Rate

- -
-------

||||||||||||||||||||||||||

False Alarms Per Hour

Google

P(:‘)t,u X1y Xty Yo, 0t 7yu—1,k)

Softmax

T Zt,u

Joint Network

. P

Pred. Network Encoder

Yu—1 TC“ !

Xt

Attention

e e

Keyword Encoder

o1

k 1 k M

(c.) RNN-Transducer Biased with
Attention Over Keyword.



https://arxiv.org/pdf/1710.09617.pdf

CLAS training

Example ref: The grey chicken jumps over the lazy dog
Sample uniformly a bias phrase b, e.g. grey chicken
With drop-probability p (e.g. 0.5) drop the selected B and replace it with another bias
phrase from the same batch
e Augment with additional N-1 more bias phrases from other references in the batch
(distractors)
e Present the model the set of N (shuffled) bias phrases:
© quick turtle
© grey chicken
© brave monkey
e If b was not dropped, insert a </bias>token to reference:
o The grey chicken</bias> jumps over the lazy dog

Google



Biasing Example

no-bias

tax bill calculator

talk to

what fruit are you

what to brew

trt world quiz

talkative ai

what fruit are you dogfood
talking pal

tal k t o what R o S - are y ous

Google



Key aspects of CLAS

e Biasing is viewed as a keyword detection task which relates to both audio and
LM (cf. beam search biasing)

e CLAS embeds “long” var-length bias sequences into fixed-length vectors

e CLAS computes attention over a set of phrases

e The model can take any list of bias phrases in inference time (including O0Vs)

o Intraining the bias phrases list is randomized for each batch
o The number and content of bias phrases can be changed from training to inference

Google



Bia

Google

sing Summary

CLAS model performs similar to biasing of conventional model

Grapheme

Method CONTACTS | Songs THIRD PARTY
Conventional Model No Biasing 36.1 26.5 -
Conventional Model Biasing 10.0 3.8 -

LAS No Biasing 26.9 16.8 10.5

CLAS + Shallow Fusion, 7.5 5.7 5.6




Online Models

Google



Streaming speech recognition

Finalize recognition &
Taking action / fetching the search results

Recognize the audio

Google



Streaming speech recognition

Finalize recognition &
Taking action / fetching the search results

\

Endpoint quickly

Recognize the audio

Google



Online Models

e LAS s not streaming

e We will show a thorough comparison of different online models
o RNN-T [Graves, 2012], [Rao et al., 2017]
o Neural Transducer [Jaitly et al., 2015], [Sainath et al., 2018]
o MoChA [Chiu and Raffel, 2018]



https://arxiv.org/pdf/1211.3711.pdf
https://arxiv.org/abs/1801.00841
https://arxiv.org/abs/1511.04868
https://arxiv.org/abs/1712.01807
https://arxiv.org/abs/1712.05382

(1) Neural Transducer: “Online” Attention Models

C

|

<sos> —| Decoder +——~\\\\\\i:>
Attention Mechanism

/

Chunk

Encoder

R Miidadi aasls B g




(1) Neural Transducer: “Online” Attention Models

a

|

C —— Decoder +—\\\\\\\i:>
Attention Mechanism

/

Chunk

Encoder

R Miidadi aasls B g




(1) Neural Transducer: “Online” Attention Models

t

|

a —— Decoder +——~\\\\\\i:>
Attention Mechanism

=

Chunk

Encoder

R Miidadi aasls B g




(1) Neural Transducer: “Online” Attention Models

<epsilon>

|

t — Decoder <——-\\\\\\::>
Attention Mechanism

=

Chunk

Encoder

R Miidadi aasls B g




(1) Neural Transducer: “Online” Attention Models

|

<epsilon> —| Decoder +——\\\\\\\i:>
Attention Mechanism

=

Chunk | Chunk

Encoder

e




(1) Neural Transducer: “Online” Attention Models
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Training Data for Neural Transducer

Word

|
|
Alignment l

I
how | are

| |

i hello i

e Online methods like RNN-T, Policy Gradient learn alignment jointly with model

e We train neural transducer with a pre-specified alignment, so don't need to
re-compute alignments (e.g., forward-backward) during training, which slows
things down on GPU



Training Data for Neural Transducer

<epsilon> how are <epsilon> you <epsilon>
hello <epsilon> <epsilon> <epsilon>
Word ! ! | | | |
. I hello | | how | are | |
Alignment | | | ! ! !

e <epsilon> signals end-of-chunk
e Since we don't have grapheme-level alignments, we wait till the end of the
word to emit the entire word’s graphemes



Neural Transducer Attention Plot

Google
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(2) Monotonic Attention
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(2) Monotonic chunkwise attention (MoChA)
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[Chiu and Raffel, 2018]
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Training monotonic chunkwise attention

e Compute expected probability of hard attention
e The expected probability distribution provides a soft attention
e Same training procedure as LAS

Train Inference
Google



Online Model Comparison

Clean
Model S\gf:h Dictation
as 5.7 4.1
RNN-T 6.8 4.0
MoChA 5.8 4.2
- 8.7 7.8

MoChA seems to be a promising online model.

Google



Endpointer



Why is Endpointing hard?
1. Latency vs WER tradeoff

(early trigger - affects WER) (late trigger - affects latency)
END_OF_UTTERANCE END_OF_UTTERANCE

) LATENCY
navigate to safeway [——




Why is Endpointing hard?
1. Latency vs WER tradeoff

(early trigger - affects WER) (late trigger - affects latency)

END_OF_UTTERANCE END_OF_UTTERANCE
) LATENCY
navigate to safeway [——

2. Noisy conditions

navigate to safeway




VAD based endpointer

e Use forced alignment to find the timing of the utterance
e Based on the timing mark each frame as SPEECH (0) or NON-SPEECH (1)
e Made mic closing decision when a fixed amount of silence is detected

Driving time to San J Francisco

1 0 1010ﬂ0 1




E2E endpointer

e An unified model does endpointing and ASR
e Add an <eos> symbol to the end of each target transcript.
e If top-1 hypothesis in the beam outputs a <eos> for a frame then close mic.

drivetosiisanfrancisco <eos>




E2E endpointer

Parameters to precise control E2E endpointing:

e Cost penalty: scale up for <eos> cost
e Pruning: max cost of <eos> allowed in beam search

Similar to thresholds for EOU detector or VAD



Evaluating an Endpointer

EOU latency
(force-align) -

0.000s EOU

e Measure endpointer latency
o Use forced alignment to find the time of the ‘sil’ that’s not followed by speech.
o Compare that to the timestamp of the END_OF_UTTERANCE.

e Metrics:
o median latency

o  90th percentile latency
o WER



Results summary

e VAD baseline: 900 ms median latency
e VAD -> E2E endpointer: up to ~700 ms improvement!!

WER Median latency 90th percentile
latency
(1) CTC AM 14.5 890 960
(2) RNNT no EP 8.4
(3) RNNT + VAD EP | 8.8 900 1030
(4) E2E RNNT EP 8.8 210 1010




Extensions of E2E Models



Google

Multi-Dialect Speech Recognition With
A Single Seq2Seq Model

[Li et al., 2018]
[Toshniwal et al., 2018]



https://arxiv.org/abs/1712.01541
https://arxiv.org/abs/1711.01694

Multi-Dialect ASR

Conventional Systems

—_

Google

Decoding — Rescoring — —> Decoding —

1

()
i AM PM LM
()
AM PM
o
7 AM PM LM
()
" =

In conventional systems, languages/dialects,
are handled with individual AMs, PMs and LMs.
Upscaling is becoming challenging.

Rescoring

en-us

en-gb

N

LM

LM

Conventional Co-training.

—_—

Seq2Seq

— Decoding —

Seq2Seq

A single model for all.



Multi-Dialect LAS

e Modeling Simplicity e Joint Optimization
e Data Sharing e Infrastructure Simplification
o among dialects and model components o asingle model for all

Table: Resources required for building each system.

Conventional Seq2Seq
data
phoneme
lexicon y N data
text normalization
LM

Google



Motivations

e We share the same interest:
o S. Watanabe, T. Hori, J.R. Hershey, Language independent end-to-end architecture for
joint language identification and speech recognition; ASRU 2017. MERL, USA.
m English, Japanese, Mandarin, German, Spanish, French, Italian, Dutch, Portuguese,
Russian.
o S. Kim, M.L. Seltzer, Towards language-universal end-to-end speech recognition;
submitted to ICASSP 2018. Microsoft, USA.
m English, German, Spanish.

Google



Multi-Dialect LAS



Dialect as Output Targets

e Multi-Task Learning: Joint Language ID (LID) and ASR
o LID first, then ASR
M '<sos> <en-gb> helloUworld<eos>
m LID errors may affect ASR performance

o ASR first, then LID
M <sos>hellolUworldc<en-gb> <eos>"

m  ASR prediction is not dependent on LID prediction, not suffering from LID
errors

Google



Dialect as Input Features

<sos> hellowor1ld <eos>

e Passing the dialect information
as additional features

T

: [previous context vector,
. previous label prediction]

components variations

encoders — acoustic

lexicon and

decoders
language

Google



Dialect Information as Cluster Coefficients

e Cluster Adaptive Training (CAT) [1]

coefficients Encoder
o more flexible model
architectures
o larger capacity in variation
modeling
o butincreased model
parameters

Google



Experimental Evaluations



Task

e 7 English dialects: us (america), IN (India), GB (Britain), ZA (South Africa), AU
(Australia), NG (Nigeria & Ghana), KE (Kenya)

Training data distribution (Total 35.1M) 20 Training grapheme distribution (Total 1.0B)

£ 40 13.693M g
o o 15.3
3 915
€ €
3 30 g
g 8.506M g
2 2 10
g 20 3
g 4.584M g 6.1
$ 10 2 5 TEY,
2 2.435M2.382M Q. .
5 AT g ERNNAR

0 _ . I " I2 Iliine.o3 01 01 00 00 00 00 00 00

enis:  endini  enghb en2za  en:au enng jenke eaotinsrhldmucgywpbfkv'jx0122395.4-6978:%$/+&%£f@=€#~V+*_,72,; | ' -1%¥
Language Grapheme
% unbalanced dialect data % unbalanced target classes

Google



LAS Co-training Baselines

Dialect us IN GB ZA AU NG KE
dialect-ind. 10.6 18.3 12.9 12.7 12.8 33.4 19.2
dialect-dep. 9.7 16.2 12.7 11.0 12.1 33.4 19.0

% dialect specific fine-tuning still wins

% simply pooling the data is missing certain dialect specific variations

Google



LAS With Dialect as Output Targets

Dialect us IN GB ZA AU NG KE
Baseline
9.7 16.2 12.7 11.0 12.1 33.4 19.0
(dialect-dep.)
LID first 9.9 16.6 12.3 11.6 12.2 33.6 18.7
ASR first 9.4 16.5 11.6 11.0 11.9 32.0 17.9
% LID error affects ASR Example target sequence
% ASR first is better LID first <sos> <en-gb> he 1 1 o U wor 1ld<eos>

ASRfirst <sos> he 1 1 olUwor 1ld<en-gb> <eos>

Google



LAS With Dialect as

Dialect us IN GB ZA AU NG KE
Baseline (dialect-dep.) 9.7 16.2 12.7 11.0 12.1 33.4 19.0
1-hot 9.6 16.4 11.8 10.6 10.7 31.6 18.1

encoder
emb. 9.6 16.7 12.0 10.6 10.8 32.5 18.5
1-hot 9.4 16.2 11.3 10.8 10.9 32.8 18.0

decoder
emb. 9.4 16.2 11.2 10.6 11.1 32.9 18.0
both 1-hot 9.1 15.7 11.5 10.0 10.1 31.3 17.4

% dialect 1-hot and embedding (emb.) performs similarly

% feeding dialect to both encoder and decoder gives the largest gains

Google



LAS With Dialect as Input Features

Figure: Feeding different dialect vectors (rows) to the LAS
encoder and decoder on different test sets (columns).

us IN GB ZA AU NG KE us IN GB ZA AU NG KE

200 200

160 us 160

80 i 2 80
GB

40 _ 40

0 ZA 0

-40 -40
AU

-80 -80

-120 NG -120

-160 KE -160

-200 -200

(a) Encoder (b) Decoder

% encoder is more sensitive to wrong dialects — large acoustic variations

* for low-resource dialects (NG, KE), the model learns to ignore the dialect information

Google



LAS With Dialect as Input Features

The dialect vector does both AM and LM adaptation

Table: The number of color/colour occurrences in hypotheses on the en-gb test data.

: : color colour
dialect vector . encoder | decoder (US) (GB)
X : X : X 1 22
___________________________________ X e x v
| |
<en-gb>:[0,1,0,0,0,0,0], ¢ | «x 19 4
___________________________________ oYX e A
<en-gb>:[0,1,0,0,0,0,0]. x | 0 25
| |
<en-us>:[1,0,0,0,0,0,0' x ' 24 0

% dialect vector helps encoder to normalize accent variations

% dialect vector helps decoder to learn dialect-specific lexicons

Google



LAS With Dialect as

Dialect UsS IN GB ZA AU NG KE
Baseline (dialect-dep.) 9.7 16.2 12.7 11.0 12.1 33.4 19.0
WERSEECER) g 96 164 118 106 107 316 18.
(encoder)
1-hot 99 170 124 110 116 325 183
CAT coeff.
emb. 94 164 117 106 106 329 181

% dialect as CAT coefficients is much better than as inputs

% but with large model params increase (160K vs. 3M)

Google



Final Multi-Dialect LAS



Final Multi-Dialect LAS

<sos> helloworld<en-gb> <eos>

o output targets:
m multi-task with ASR
first
o input features:
m feeding dialect to
both encoder and
decoder

Attention

. [previous context vector,

. previous label prediction]

Google



Final Multi-Dialect LAS

Dialect usS IN GB ZA AU NG KE

Baseline

9.7 16.2 12.7 11.0 12.1 33.4 19.0
(dialect-dep.)

output targets 94 165 116 110 119 320 179

(ASR first)
input features
9.1 15.7 11.5 10.0 10.1 31.3 17.4
(both)
final 9.1 16.0 11.4 9.9 10.3 31.4 17.5

% small gains when combining input and output

* the final system outperforms the dialect-dependent models by 3.1~16.5% relatively

Google



IndicX - Task

¢ 9 Indian languages: bn_bd, gu_in, hi_in, ur_pk, mr_in, kn_in, mi_in, ta_in, te_in
e large script variations

- Training data distribution (Total 2.1M)
Bengali (bn_bd) - SIH1F 9197 3K Felod

Gujarati (gu_in) - & tRe{l BER ol U ol WER URL ol H3

Hindi (hi_in) - 9ger difsatamdr grefr

Kannada (kn_in) - Sw@ 3FE80ef dwes

Malayalam (ml_in) - ag)a1il5)o @pQI0YOS QNEO)HEIRNHS @RAIOO
Marathi (mr_in) - SesuT=ar MGaTdedr

Tamil (ta_in) - @& €2 (5 HSPTLSILITGLD

Telugu (te_in) - & DA '$H&a0" Sogamocy @D HEear
Urdu (ur_pk) - dims <3S s (6558 38 asa g Fsi

20
0.36M

15
0.29M
0.24M - 0.23M 0.23M
10 0.20M 0.19M
I 0.16M
0

bn_bd gu_in hi_in ur_pk mr_in kn_in ml_in ta_in te_in
Language

Utterance count percentage (%)
w

c 0O O o 0 O O o O

GOOgle [1] S. Toshniwal, T.N. Sainath, R.J. Weiss, B. Li et.al Multilingual speech recognition with a single end-to-end model, ICASSP 2018


https://cs.corp.google.com/piper///depot/google3/experimental/users/tsainath/papers/icassp2018/ronw-multilingual-las/indic_seq2seq.pdf

IndicX - Task

1.0

°
bl 0012 0 0.036 0 0024 0 0.012 0 10 Average Word Length for Indic Languages 9 Average # of Words per Sentence for Indic Languages
Qo
5 0.057 0.011 0 0.068 0 0.023 0 8
5 0.8
S 0 0072 m 0o 0 o0 2 8 g7
< § c

[
£ 0.032 0.011 0.011 0 0.011 0 06 5 € 6
s g s &
S 0 o o o0 o 0o o0 o 2 g >
£ - Q
< ® g4
o' 0.024 0.071 Rgley 0.012 04 5 4 s
c 5 s 3
w0 0 0 0 5 S
< 0.2 # 2 # 2
5 0.0150.029 0 0.015 1
x
S 0 0 0 0 0 0
> ) o ) ) . ) . 0.0 bn_bd gu_in hi_in ur_pk mr_in kn_in ml_in ta_in te_in bn_bd gu_in hi_in ur_pk mr_in kn_in ml_in ta_in te_in

bn_bd gu_in hi_in  kn_in ml_in mr_in ta_in te_in wur_pk
Language Language

% large variations in graphemes % lexicon variations % LM variations

% totally 964 unique graphemes

Google [11 S. Toshniwal, T.N. Sainath, R.J. Weiss, B. Li et.al Multilingual speech recognition with a single end-to-end model, ICASSP 2018


https://cs.corp.google.com/piper///depot/google3/experimental/users/tsainath/papers/icassp2018/ronw-multilingual-las/indic_seq2seq.pdf

IndicX - Co-training

WER (in %)

4

4

3

3

2

2

5

0

5

0

5

o

wv

o

w

0

Comparison of Joint model v/s Individual model

HEm joint model

Individual model

bn_bd gu_in hi_in ur_pk mr_in kn_in ml_in ta_in te_in

Language

% co-trained model is consistently better

in bn_bd

in gu_i

in ta_in mr_in mLin kn_in hi

ur_pk te

0 0 0 0.001 O

0 0 0 0 0 0

0.0020.0040.035§¢A<ER0.008 O 0 0.0050.014 O
0 0.0010.0020.004 geRek] 0 0.0050.002 O
0.0010.007 O 0.0210.003 oAk 0.0020.018 O
0 0 0 0 0 0 0
0 0.001 0 0.0030.001 O 0
0.0010.0030.0090.0040.003 O 0

bn_bd gu_in hi_in kn_in ml_in mr_in ta_in te_in ur_pk mixed

% tested multitask learning (LID and ASR), not helpful
% the model cannot do code switching, faithful to one language

Google [11 S. Toshniwal, T.N. Sainath, R.J. Weiss, B. Li et.al Multilingual speech recognition with a single end-to-end model, ICASSP 2018
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% co-trained model chooses the right script


https://cs.corp.google.com/piper///depot/google3/experimental/users/tsainath/papers/icassp2018/ronw-multilingual-las/indic_seq2seq.pdf

IndicX - Co-training with LID

40 35 3 o o
= Unconditioned = Encoder g
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bn_bd gu_in hi_in ur_pk mr_in kn_in ml_in ta_in te_in bn_bd gu_in hi_in ur_pk mr_in kn_in ml_in ta_in te_in 5 0.0
Language Language bn_bd gu_in hi_in kn_in ml_in mr_in ta_in te_in ur_pk mixed
% helps more on encoder % feeds to encoder only is sufficient % chooses the correct script

% faithful to language ID,
wrong ID leads to wrong script

GOOgle [1] S. Toshniwal, T.N. Sainath, R.J. Weiss, B. Li et.al Multilingual speech recognition with a single end-to-end model, ICASSP 2018


https://cs.corp.google.com/piper///depot/google3/experimental/users/tsainath/papers/icassp2018/ronw-multilingual-las/indic_seq2seq.pdf

Summary and Open questions

e Summary

o End-to-end models can be competitive to production

o  We now have models which can endpoint, are streaming, can do contextual biasing
e Open Questions

o How to inject pronunciations?

o How to handle long-tail problems (numerics)?
e Expanding to new domains

o Speech To Parse
o  Audio-visual

Google 173
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