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Robust speech recognition

As speech recognition is transferred from the laboratory to the 
marketplace robust recognition is becoming increasingly 
important

“Robustness” in 1985:

– Recognition in a quiet room using desktop microphones

Robustness in 2005:

– Recognition ….

» over a cell phone

» in a car

» with the windows down

» and the radio playing

» at highway speeds
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Speech in high noise (Navy F-18 flight line)

Speech in background music

Speech in background speech

Transient dropouts and noise

Spontaneous speech

Reverberated speech

Vocoded speech

Some of the hardest problems in speech 
recognition
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Outline of discussion

Summary of the state-of-the-art in speech technology at 
Carnegie Mellon and elsewhere

Review of fundamentals of speech recognition

Introduction to robust speech recognition: classical 
techniques

Robust speech recognition using missing-feature techniques

Use of multiple microphones for improved recognition 
accuracy

The future of robust recognition:

– Signal processing based on human auditory perception

– Computational auditory scene analysis
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Introduction

Background:

– The technologies of speech recognition and text-to-speech synthesis 
have advanced rapidly over the last decade

– Nevertheless, there are relatively few commercially-practical speech-
based applications being sold today

Goals of this talk:

– To summarize the present state of the art and future directions in 
speech technology

– To discuss key unsolved problems in transitioning laboratory technology 
to practical systems

– To describe and discuss several speech-based applications now under 
development at CMU and elsewhere
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Speech and language research
at Carnegie Mellon

Some facets of CMU’s ongoing core research:

– Large-vocabulary speech recognition

– Text-to-speech synthesis

– Spoken language understanding

– Conversational systems

– Machine translation

– Multi-modal integration
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Speech and language research
at Carnegie Mellon

Some application-focused efforts:

– The Communicator system (Alex Rudnicky)

– Informedia group (Howard Wactlar)

» Video on demand

– LISTEN group (Jack Mostow):

» Literacy training using speech input

– CALL group (Maxine Eskenazi):

» Foreign language training using speech input

– Wearable computer group (Dan Sieworiek/Alex Rudnicky)
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What we will discuss …

Core technology

– Automatic speech recognition

– Text-to-speech synthesis

Introductory comments on commercial applications

Information access through conversational systems

– CMU communicator and commercial information-access apps

Multi-media applications

– Informedia and LISTEN

User interface issues

– The Universal Speech Interface

Concluding remarks
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Speech recognition technology:
accuracy is improving!

• But …. significant problems 
remain because of a lack of 
robustness
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Speech recognition at CMU

The SPHINX-III system (1996-present):

– “Unlimited” vocabulary in English and Spanish; smaller versions in
Serbo-Croatian, French, Korean, and Haitian Creole

– ~60,000 words in unlimited-vocabulary language model

– Continuous or semi-continuous hidden Markov models

– Runs on Windows and Unix/Linux platforms

Sphinx-IV decoder in Java

– Funded by Sun, collaboration of CMU, Sun, MERL, HP, MIT

Code for both systems available in Open Source form
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Text-to-speech synthesis at Carnegie Mellon

Current TTS technology at CMU (and also AT&T, ATR, 
Microsoft, and elsewhere): synthesis based on concatention of 
selected recorded speech units

Major research issues and problems:

– Recording natural domain-appropriate databases with good phonetic 
coverage

– Joining units smoothly (currently units are selected based on F0, power, 
delta cepstra, with penalties for duration mismatch)

– Prosody and naturalness
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Personalized synthetic voices

Commercial voices from the Cepstral Corporation:

– David

– Linda

– Miguel

– Marta

Cepstral voices are also presently available in Canadian 
French, British English, and German, with other languages  to 
follow

Sample voices developed at CMU:

– Rich
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Open source code for ASR and TTS available 
from Carnegie Mellon

http://www.speech.cs.cmu.edu/hephaestus.html

– ASR: Sphinx and SphinxTrain

– TTS: Festival, Festvox, FLITE

– Language factory: QuickLM, Pronounce, Condition

– Spoken language: CMU Communicator, SpeechLink, openvxi

http://mi.eng.cam.ac.uk/~prc14/toolkit.html

– Language modeling: CMU-Cambridge toolkit

http://speech.mty.itesm.mx/~jnolazco/proyectos.htm

– Sphinx-III in (American) Spanish
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CMU TTS resources available
in Open Source

Festival

– General multilingual speech synthesis engine (from the University of 
Edinburgh)

Festvox

– Tools for creating synthetic voices

FLITE

– Fast synthesis for embedded engines
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What kinds of speech applications are 
available now?

Dictation systems:

– Large vocabulary and speaker-adaptive, with adaptable vocabularies 
and grammars

Command-and-control systems:

– Voice control of operating system and applications

– Part of infrastructure of Windows XP and Mac OSX

Information-access systems:

– Frequently conversational in nature

– Frequently involve telephone access (including cell phones)

Data entry using handheld terminals and simple wearable 
systems

Primitive translation systems
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Command and control of
operating systems and applications

Some attributes of current systems:

– Voice commands can begin to replace the mouse and keyboard

– Limited vocabulary based on which window is in focus or based on user 
state   

– Probably will ultimately be a complement rather than a replacement for 
the keyboard and mouse
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QuickTime™ and a
Video decompressor

are needed to see this picture.

An (old) example of command and control in a 
commercial product

Dragon systems demo (circa 1998):
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Information access through
spoken language systems

What is a spoken language system?

Some attributes:

– Voice input and output

– Intelligent interaction with a database to solve real problems

Some domains that have been studied:

– Travel planning, orientation, navigation

– General information retrieval 

– General provision of advice

Comments:

– A “marriage” of speech recognition and natural language processing

– Major goal: to develop voice systems that users will prefer over keyboard-driven 
systems
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Conversational systems:
the CMU Communicator

Mixed-initiative interaction

– Both the user and computer can initiate action and clarification

User and task modeling

– User preferences and defaults

– Understanding of the semantics of the underlying task

Dialog scripting

– Knowledge of user goals and subgoals

– Dynamic modification of lexicon and grammar based on dialog context

– Guidance of user through planning procedures

Task analysis and domain knowledge needed for successful 
system development
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The CMU Communicator

QuickTime™ and a
DV/DVCPRO - NTSC decompressor

are needed to see this picture.
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Examples of commercial
spoken language systems

Reservations on United Airlines (ScanSoft)

Health care patient eligibility verification (Nuance)

BeanTown Navigation on Nokia 3650 phone (ScanSoft) 
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CHALLENGES FOR 
CONVERSATIONAL SYSTEMS

Recognition of spontaneous speech

Adaptation and learning at all levels

– Acoustic

– Lexical

– Semantic

– Task domain

– Environment

Domain awareness for both users and machines

Training with very little data

Establishing the right balance of initiative between user and system

Development of toolkits for new applications



Multimedia

Content Classification,
Retrieval, and Protection

Audio-Visual Speech
Recognition;

Scene Analysis/Synthesis

Audio/Speech

Image/Video

Text

Translation
Natural Language Proc.

Coding and Processing

Analysis, Coding
and Representation

Speech Recognition
Speech Synthesis

THE CHALLENGE OF MULTIMEDIA
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InformediaTM: News on Demand

Motivation:

Full-motion video is the most compelling presentation medium 
for display, training, and information access

Video is the most difficult medium for browsing and searching

Spoken language interface enables anyone to 

– retrieve desired information ...

– using natural fluent speech ...

– with no special training
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InformediaTM: News on Demand

The original Informedia system included:

Unlimited-vocabulary spoken language interface

Real-time MPEG video playback

Totally automatic indexing ...

– based on text captioning for television news

– based on speech recognition for public radio broadcasts

Browsing capability

Automatic indexing based on speech recognition ultimately 
could be extended to all digital video libraries.
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QuickTime™ and a
DV/DVCPRO - NTSC decompressor

are needed to see this picture.

The original Informedia system (~1997)

For more information: www.informedia.cs.cmu.edu
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Speech is used to create transcripts and to align video to transcripts 
for indexing

QuickTime™ and a
DV/DVCPRO - NTSC decompressor

are needed to see this picture.

Informedia today
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ASR accuracy depends on speaking style and 
the environment

CMU recognition error rates in transcription of Broadcast News 
TV and  radio news broadcasts (1997 DARPA evaluations)

Prepared studio speech 15.5%

Spontaneous studio speech 22.8%

Telephone and similar channels 32.2%

Background music 33.4%

Background noise 30.8%

Non-native speakers 33.0%

OVERALL AVERAGE 24.0%
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Another multimedia application:
the LISTEN Reading Tutor

Using speech to help children and adults learn to read:

Students read from prepared texts

Computer listens, detects mistakes, and applies “helpful” 
feedback

Many interesting issue in both speech recognition and 
application design
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The CMU LISTEN Project

For more information: http://www.cs.cmu.edu/~listen

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.
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Speech recognition
on handheld teminals

Some characteristics:

– Noisy environment

– Limited computation and memory

– Terminals generally operated by single user

Some additional attributes of mobile phones:

– Power available only for limited periods of time

– High cost sensitivity

– Operate in multi-lingual environment and under coding
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One approach to application design:
The Universal Speech Interface

Goals of the Universal Speech Interface:

Do for speech what Graffiti™ has done for mobile text entry

– semi-natural language: man, machine meet halfway

– 5 minute training, via interactive tutorial

Do for speech what the Macintosh look-and-feel has done for 
GUIs

– a universal look-and-feel (rather, “sound-and-feel”) across all 
applications
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For more info: http://www.cs.cmu.edu/~usi

QuickTime™ and a
DV/DVCPRO - NTSC decompressor

are needed to see this picture.

The CMU
Universal Speech Interface

http://www.cs.cmu
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So why hasn’t speech technology
developed faster?

(Or why haven’t we yet developed the “killer app” for speech 
input and output?)

Even though core recognition has improved, we still need...

Greater robustness ....

– To speakers and dialects

– To the effects of unknown noise and filtering

– To vocoded speech and telephone channels 

Automatic adaptation to out-of-domain input:

– New words, syntax, and semantic concepts

Improved human-computer interfaces

Lower cost?
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Summary: what’s going on now?

Core speech recognition technology has improved greatly over the 
last decade and is now usable if deployed with care, but ...…

Current speech systems remain fragile to

– environmental degradation (including interfering sources, filtering and nonlinear
distoration)

– spontaneous and disfluent speech

– out-of-vocabulary utterances, unusual syntax, and other unexpected types of 
input

Spoken language systems for information access has taken hold, but 
conversational systems are limited by recognition accuracy and 
application design

Automatic detection and assimilation of new words and concepts 
remains extremely difficult
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Summary: what are some
interesting trends to watch for?

Greater commercial success as we conquer the major 
problems of

– robustness and adaptation for ASR

– effective portable application design

Greater emphasis on multi-media applications in which speech 
is one of several input/output modalities

Greater diffusion of speech-baased education and training 
applications

Continued search for the right way to integrate speech, 
keyboard, and mouse in the OS

An “interesting” period in which central servers and handsets 
both compete with board-level products as the site for 
recognition and related processing
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Outline of discussion

Summary of the state-of-the-art in speech technology at 
Carnegie Mellon and elsewhere

Review of fundamentals of speech recognition

Introduction to robust speech recognition: classical 
techniques

Robust speech recognition using missing-feature techniques

Use of multiple microphones for improved recognition 
accuracy

The future of robust recognition:

– Signal processing based on human auditory perception

– Computational auditory scene analysis
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The source-filter model of speech production 

A useful model for representing the generation of speech sounds:

Pitch

Pulse train source

Noise source

Vocal tract model

Amplitude

p[n]
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THE ACOUSTIC THEORY OF SPEECH 
PRODUCTION: MODELING THE VOCAL TRACT

The sound pressure at a distance  r is determined by

– Spectrum of the excitation signal

– Configuration of throat, jaw, tongue, lips, teeth, etc.

– Loading effect of air
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Unvoiced speech sources

Turbulent voicing sources are approximately flat in frequency:
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Voiced speech sources

Glottal pulses have a spectrum that decreases with the square 
of frequency:
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Frequency response:

x = 0x = −
Glottis Lips

Sound propagation in a uniform tube
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Vowel production in the vocal tract
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Comment: Resonant frequencies now non-uniform

x = 0x = −
Glottis Lips

A more realistic model of sound production
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Some example vowels 
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Vowel perception and formant 
frequencies� � � �
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Context dependencies in speech production

Spectral patterns that form /di/ and /du/:
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The source-filter model of speech production 

A useful model for representing the generation of speech sounds:

Pitch

Pulse train source

Noise source

Vocal tract model

Amplitude

p[n]
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The speech spectrogram
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Separating the vocal-tract excitation from the 
filter

Original speech:

Speech with 75-Hz excitation:

Speech with 150-Hz excitation:

Speech with noise excitation:
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Summary: elements of speech production

We have discussed very superficially the production of speech 
sounds

– Source-filter model

– Vocal tract transfer functions

– Impact on perception

The source filter model is used

– As a way to model how we produce speech sounds

– As a way to reduce the number of parameters needed to characterize 
speech sounds

– As a way of extracting features that are used by speech recognition 
systems
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Outline of discussion

Basic mechanisms of speech production

Basic mechanisms of auditory perception

(Very!)  basic review of automatic speech recognition

Conventional signal processing for speech recognition

Signal processing for improved speech recognition

Signal processing for improved sound source separation
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OVERVIEW OF SPEECH RECOGNITION

Major functional components:

– Signal processing to extract features from speech waveforms

– Comparison of features to pre-stored templates

Important design choices:

– Choice of features

– Specific method of comparing features to stored templates

Feature extraction
Decision making

procedure

Speech features

Phoneme
hypotheses
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GOALS OF SPEECH REPRESENTATIONS

Capture important phonetic information in speech

Computational efficiency

Efficiency in storage requirements

Optimize generalization
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WHY PERFORM SIGNAL PROCESSING?

A look at the time-domain waveform of “six”:

It’s hard to infer much from the time-domain waveform



Carnegie
Mellon Slide 60 CMU Robust Speech Group

WHY PERFORM SIGNAL PROCESSING IN THE 
FREQUENCY DOMAIN?

Human hearing is based on frequency analysis

Use of frequency analysis often simplifies signal processing

Use of frequency analysis often facilitates understanding
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FEATURES FOR SPEECH RECOGNITION: 
CEPSTRAL COEFFICIENTS

The cepstrum is the inverse transform of the log of the 
magnitude of the spectrum

Useful for separating convolved signals (like the source and 
filter in the speech production model)

Can be thought of as the Fourier series expansion of the 
magnitude of the Fourier transform

Generally provides more efficient and robust coding of speech 
information than LPC coefficients

Most common basic feature for speech recognition
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THREE WAYS OF DERIVING CEPSTRAL 
COEFFIENTS

LPC-derived cepstral coefficients (LPCC):

– Compute “traditional” LPC coefficients

– Convert to cepstra using linear transformation

– Warp cepstra using bilinear transform  

Mel-frequency cepstral coefficients (MFCC):

– Compute log magnitude of windowed signal

– Multiply by triangular Mel weighting functions

– Compute inverse discrete cosine transform

Perceptual linear prediction (PLP)
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COMPUTING CEPSTRAL COEFFICIENTS

Comments:

– MFCC is currently the most popular representation.  

– Typical systems include a combination of 

» MFCC coefficients

» “Delta” MFCC coefficients

» “Delta delta” MFCC coefficients

» Power and delta power coefficients
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COMPUTING LPC CEPSTRAL COEFFICIENTS

Procedure used in SPHINX-I:

– A/D conversion at 16-kHz sampling rate

– Apply Hamming window, duration 320 samples (20 msec) with 50% 
overlap (100-Hz frame rate)

– Pre-emphasize to boost high-frequency components

– Compute first 14 auto-correlation coefficients

– Perform Levinson-Durbin recursion to obtain 14 LPC coefficients

– Convert LPC coefficients to cepstral coefficients

– Perform frequency warping to spread low frequencies

– Apply vector quantization to generate three codebooks



Carnegie
Mellon Slide 65 CMU Robust Speech Group

An example: the vowel in “welcome”

The original time function:
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THE TIME FUNCTION AFTER WINDOWING
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THE RAW SPECTRUM
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PRE-EMPHASIZING THE SIGNAL

Typical pre-emphasis filter:

Its frequency response:

y[n] = x[n]− .96x[n −1]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

Normalized frequency (Nyquist == 1)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-30

-20

-10

0

10

Normalized frequency (Nyquist == 1)

M
ag

ni
tu

de
 R

es
po

ns
e 

(d
B

)



Carnegie
Mellon Slide 69 CMU Robust Speech Group

THE SPECTRUM OF 
THE PRE-EMPHASIZED SIGNAL
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THE LPC SPECTRUM
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THE TRANSFORM OF 
THE CEPSTRAL COEFFICIENTS
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THE BIG PICTURE: 
THE ORIGINAL SPECTROGRAM
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EFFECTS OF LPC PROCESSING
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COMPARING REPRESENTATIONS

ORIGINAL SPEECH                        LPCC CEPSTRA (unwarped)
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COMPUTING MEL FREQUENCY CEPSTRAL 
COEFFICIENTS

Segment incoming waveform into frames

Compute frequency response for each frame using DFTs

Multiply magnitude of frequency response by triangular 
weighting functions to produce 25-40 channels

Compute log of weighted magnitudes for each channel

Take inverse discrete cosine transform (DCT) of weighted 
magnitudes for each channel, producing ~14 cepstral 
coefficients for each frame

Calculate delta and double-delta coefficients
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AN EXAMPLE: DERIVING MFCC coefficients 

0 0.2 0.4 0.6 0.8 1 1.2
0

1000

2000

3000

4000

5000

6000

7000

8000



Carnegie
Mellon Slide 77 CMU Robust Speech Group

THE MEL WEIGHTING FUNCTIONS
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THE LOG ENERGIES OF THE MEL FILTER 
OUTPUTS

0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

30

35



Carnegie
Mellon Slide 79 CMU Robust Speech Group

THE CEPSTRAL COEFFICIENTS
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LOGSPECTRA RECOVERED FROM CEPSTRA
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COMPARING SPECTRAL REPRESENTATIONS

ORIGINAL SPEECH MEL LOG MAGS AFTER CEPSTRA
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Comments on the MFCC representation

It’s very “blurry” compared to a wideband spectrogram!

Aspects of auditory processing represented:

– Frequency selectivity and spectral bandwidth (but using a constant 
analysis window duration!)

» Wavelet schemes exploit time-frequency resolution better

– Nonlinear amplitude response

Aspects of auditory processing NOT represented:

– Detailed timing structure

– Lateral suppression

– Enhancement of temporal contrast

– Other auditory nonlinearities
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Outline of discussion

Basic mechanisms of speech production

Basic mechanisms of auditory perception

(Very!)  basic review of automatic speech recognition

Conventional signal processing for speech recognition

Signal processing for improved speech recognition

Signal processing for improved sound source separation
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Speech representation using mean rate

Representation of vowels by Young and Sachs using mean rate:

Mean rate representation does not preserve spectral information
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Speech representation using average localized 
synchrony measure

Representation of vowels by Young and Sachs using ALSR:
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The importance of timing information

Re-analysis of Young-Sachs data by Searle:

Temporal processing captures dominant formants in a spectral 
region
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Paths to the realization of temporal fine 
structure in speech

Correlograms (Slaney and Lyon)

Computations based on interval processing

– Ghitza’s Ensemble Interval Histogram (EIH) model

– Kim’s Zero Crossing Peak Analysis (ZCPA) model




