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List of abbreviations 
ASR Automatic Speech Recognition 
AM Acoustic Model 
BF Beamformer 
BLSTM Bidirectional LSTM 
CMLLR Constrained MLLR (equivalent to fMLLR) 
CNN Convolutional Neural Network 
CE Cross Entropy 
DAE Denoising Autoencoder 
DNN Deep Neural Network 
DOC Damped Oscillator Coefficients 
DSR  Distant Speech Recognition 
D&S Delay and sum (Beamformer) 
fDLR Feature space Discriminative Linear Regression 
fMLLR Feature space MLLR (equivalent to CMLLR) 
GCC-PHAT  Generalized Cross Correlation with Phase Transform 
GMM Gaussian Mixture Model 
HMM Hidden Markov Model 
IRM Ideal Ratio Mask 
KL Kullback–Leibler (divergence/distance) 
LCMV Linear Constrained Minimum Variance 
LDA Linear Discriminant Analysis 
LIN Linear Input Network 
LHN Linear Hidden Network 
LHUC Learning Hidden Unit Contribution 
LM Language Model 
LP Linear Prediction 

LSTM Long Short-Term Memory (network) 
MAP Maximum A Posterior 
MBR Minimum Bayes Risk 
MCWF Multi-Channel Wiener Filter 
ML Maximum Likelihood 
MLLR Maximum Likelihood Linear Regression 
MLLT Maximum Likelihood Linear Transformation 
MMeDuSA Modulation of Medium Duration Speech Amplitudes 
MMSE Minimum Mean Square Error 
MSE Mean Square Error 
MVDR Minimum Variance Distortionless  Response 
 (Beamformer) 
NMF Non-negative Matrix Factorization 
PNCC Power-Normalized Cepstral Coefficients  
RNN Recurrent Neural Network 
SE Speech Enhancement 
sMBR state-level Minimum Bayes Risk 
SNR Signal-to-Noise Ratio 
SRP-PHAT Steered Response Power with the PHAse Transform 
STFT Short Time Fourier Transform 
TDNN Time Delayed Neural Network 
TDOA Time Difference Of Arrival 
TF Time-Frequency 
VTLN Vocal Tract Length Normalization 
VTS Vector Taylor Series 
WER Word Error Rate 
WPE Weighted Prediction Error (dereverberation) 
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Notations 

Basic notation 

𝑎 Scalar 

𝐚 Vector 

𝐀 Matrix 

Signal processing 

𝐴 Sequence 

𝑥[𝑛] Time domain signal at sample 𝑛 

𝑋(𝑡, 𝑓) Frequency domain coefficients at frame 𝑡 and frequency bin 𝑓 

ASR 

𝐨𝑡 Speech feature vector at frame 𝑡 

𝑂 ≡ {𝐨𝑡 |𝑡 = 1, … ,𝑇} 𝑇-length sequence of speech features 

𝑤𝑛 Word at 𝑛th position 

𝑊 ≡ {𝑤𝑛|𝑛 = 1, … ,𝑁} 𝑁-length word sequence 
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Notations 

operation 

𝑎∗ Complex conjugate 

𝐀T Transpose 

𝐀H Hermitian transpose 

𝐚 ∘ 𝐛 or 𝐀 ∘ 𝐁 Elementwise multiplication 

𝜎() Sigmoid function 

softmax() Softmax function 

tanh() Tanh function 
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1. Introduction 
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1.1 Evolution of ASR 
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From pattern matching to probabilistic approaches 

• 50s-60s   
– Initial attempts with template matching 
– Recognition of digits or few phonemes 

• 70s 
– Recognition of 1000 words 
– First National projects (DARPA) 
– Introduction of beam search 

• 80s 
– Introduction of probabilistic model approaches     

(n-gram language models, GMM-HMM acoustic 
models) 

– First attempts with Neural Networks 
– Launch of initial dictation systems (Dragon Speech) 

 

(Juang’04) 
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From research labs to outside world 

• 90s 
– Discriminative training for acoustic models,  
     MLLR adaptation, VTS 
– Development of Common toolkits (HTK) 

• 2000s 
– Less breakthrough technologies  
– New popular toolkits such as KALDI 
– Launch of large scale applications  
     (Google Voice search) 

• 2010s 
– Introduction of DNNs, RNN-LMs 
– ASR used in more and more products (e.g. SIRI…) 

(Juang’04) 
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Evolution of ASR performance 

 

1% 

10% 

100% 

2000 2010 2005 1995 2015 

Deep learning 
Interspeech 2016 
(Saon’16) 

(Pallett’03, Saon’15, Saon’16) 

Switchboard task (Telephone conversation speech) 
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Impact of deep learning 

• Great performance improvement 
– DNNs are more robust to input variations 
 bring improvements for all tasks (LVCSR, DSR, …) 

 
• Robustness is still an issue 

– Speech enhancement/adaptation improve performance  
Microphone array, fMLLR, …  

 
• Reshuffling the cards 

– Some technologies relying on GMMs became obsolete, 
VTS, MLLR … 

– Some technologies became less effective,  
VTLN, Single channel speech enhancement, … 

– New opportunities,  
• Exploring long context information for recognition/enhancement 
• Front-end/back-end joint optimization, … 

 

(Seltzer’14, Delcroix’13) 
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Towards distant ASR (DSR) 

Distant microphone 
 

e.g., Human-human comm.,  
Human-robot comm. 

Close-talking microphone 
 

e.g., voice search 
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Interest for DSR - Academia  
 
 

ICSI  
meeting  RATS 

2005 2010 2015 
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Interest for DSR - Industry 

 

Voiced controlled appliances 

Robots 

Game consoles 

Home assistants 
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1.2 Challenges of DSR 
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Reverberation 

Background noise 

Interfering 
speaker 

Distant mic 

Challenges of DSR 
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Recent achievements 

• REVERB 2014 (WER) 
 
 
 
 
 
 

• CHiME-3 2015 (WER) 
 

Baseline (GMM) 

Multi-mic front-end + robust back-end 

Robust back-end 

48.9 % 

22.2 % 

9.0 % 

Robust back-end 

Multi-mic front-end + robust back-end 

33.43 % 

15.60 % 

7.60 % 

Baseline (DNN) 
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1.3 Overview of DSR systems 
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DSR system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
Speech 

enhancement 

𝑦𝑗[𝑛] 
𝑥�[𝑛] 𝐨𝑡 

Model 
adaptation 



20 

Signal model – Time domain 

• Speech captured with a distant microphone array 
 
 

 
 
 

 
 
 
 

• Microphone signal at 𝑗th microphone 

𝑦𝑗 𝑛 = �ℎ𝑗 𝑙 𝑥 𝑛 − 𝑙
𝑙

+ 𝑢𝑗 𝑛 = ℎ𝑗 𝑛 ∗ 𝑥 𝑛 + 𝑢𝑗 𝑛  

– 𝑥 𝑛  Target clean speech 
– ℎ𝑗 𝑛    Room impulse response 
– 𝑢𝑗 𝑛    Additive noise (background noise, …) 
– 𝑛  Time index 

𝑥 𝑛  ℎ𝑗 𝑛  

𝑦𝑗 𝑛  𝑢𝑗 𝑛  



21 

Signal model - STFT domain 

• Speech captured with a distant microphone array 
 
 

 
 

 
 

 
 

• Microphone signal at 𝑗𝑡𝑡 microphone: 
𝑌𝑗 𝑡, 𝑓 ≈�𝐻𝑗 𝑚, 𝑓 𝑋 𝑡 − 𝑚,𝑓

𝑚

+ 𝑈𝑗 𝑡,𝑓 = 𝐻𝑗 𝑡,𝑓 ∗ 𝑋 𝑡, 𝑓 + 𝑈𝑗 𝑡, 𝑓  

– 𝑋 𝑡,𝑓  Target clean speech 
– 𝐻𝑗 𝑡, 𝑓  Room impulse response 
– 𝑈𝑗(𝑡, 𝑓) Additive noise 
– (𝑡, 𝑓) time frame index and frequency bin index 

Approximate a long-term 
convolution in the time domain 
as a convolution in the STFT 
domain, because ℎ𝑖 𝑛  is longer 
than the STFT analysis window 

𝑋(𝑡, 𝑓) 𝐻𝑗 𝑡, 𝑓  

𝑌𝑗 𝑡, 𝑓  
𝑈𝑗(𝑡, 𝑓) 
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Speech enhancement (SE) front-end 

• Reduce mismatch between the observed signal and the 
acoustic model caused by noise and reverberation 

SE front-end 

𝑦𝑗[𝑛] 𝑥�[𝑛] 

Multi-channel 
dereverberation 

Multi-channel 
noise reduction 

Single-channel 
noise reduction 



23 

Feature extraction 

• Converts a speech signal to a sequence of speech features 
more suited for ASR, typically log mel filterbank coefficients 

• Append left and right context 

Feature 
extraction 

… … 

𝑥�[𝑛] 
𝑂 ≡ {𝐨𝑡 |𝑡 = 1, … ,𝑇}  

STFT log( ∙ ) Mel filtering Context 
expansion  ∙ 2 
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Recognition 

• Speech recognition 
– Bayes decision theory(MAP):  
 𝑊� = arg max

𝑊
𝑝(𝑊|𝑂) 

= arg max
𝑊

𝑝 𝑂 𝑊 𝑝 𝑊  
 

 
• Acoustic model 

– HMM: 

𝑝 𝑂 𝑆 = 𝑝 𝒐1 𝑠1 𝑝 𝑠1 �𝑝 𝒐𝑡 𝑠𝑡 𝑝 𝑠𝑡 𝑠𝑡−1

𝑇

𝑡=2

 

Where 𝑠𝑡  is an HMM state index 

– HMM state emission probability, 
𝑝 𝒐𝑡 𝑠𝑡  obtained as the output of a 
deep neural network (DNN) 

 

Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 

Features 
 phonemes 

Phonemes 
 words 

Words 
 sentences 

HMM with DNN N-gram or RNN 

… … 
𝑂 ≡ {𝐨𝑡 |𝑡 = 1, … ,𝑇}  
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• Trained using error back-propagation 
• Training criterion, cross entropy, MMSE, State-level MBR, …  

Basics of deep neural networks 

Output layer (𝑙 = 𝐿) 

Input layer (𝑙 = 0) 

Hidden layers (𝑙) 

𝐚𝑡𝑙 = 𝐖𝑙𝐡𝑡𝑙−1 + 𝐛𝑙  
𝐡𝑡𝑙 = 𝜎 𝐚𝑡𝑙  
 

   Activation function 𝜎 ∙  

0 

1 1 

0 

Sigmoid Relu 

𝐡𝑡𝑙  

𝑝 𝑠𝑡 = 𝑘 𝐨𝑡 = ℎ𝑡,𝑘
𝐿 = softmax(𝐚𝑡𝐿) 𝑘 
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DNN-based acoustic modeling 

• Minimize cross entropy 

𝐽(𝜃) = −��𝜏𝑡,𝑘 logℎ𝑡,𝑘
𝐿 (𝜃)

𝑘𝑡

 

– 𝜏𝑡,𝑘       Target label 

– ℎ𝑡,𝑘
𝐿      Network output 

– 𝜃          Network parameters 

• Optimization using error 
backpropagation 

• Use large amount of speech training 
data with the associated HMM state 
alignments 

Output HMM state 

Log mel filterbank  
+ 11 context frames 

~7
hi

dd
en

 la
ye

rs
, 

 2
04

8 
un

its
 

1,000 ~ 10,000 units 

･ ･ ･ ･ ･ ･ 
Input speech features 

a i u w N ・・・ 

(Hinton’12, Mohamed’12) 
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Content of the tutorial 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

In this tutorial we describe some representative approaches for 
each of the main components of a DSR system 
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Topics not covered in this tutorial 

• Voice activity detection 
 

• Keyword spotting 
 

• Multi-speaker / Speaker diarization 
 

• Online processing 
 

• Data simulation 
 

• Lexicon, Language modeling and decoding 



29 

1.4 Overview of related tasks 
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Robust ASR tasks 
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CHiME 1, 2 

• Distant speech recognition in living room 
– Acoustic conditions 

• Simulated distant speech 
• SNR: -6dB to - 9dB 

– # mics : 2 
– CHiME 1: Command (Grid corpus)  
  + noise (living room) 
– CHiME 2 (WSJ): WSJ (5k) + noise (living room) 

 
http://spandh.dcs.shef.ac.uk/chime_challenge 

stereo 

(Barker’13, Vincent’13) 
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CHiME 3, 4 

• Noisy speech recognition using  a tablet 
– Recording conditions 

• Noise types: Bus, Café, Street, Pedestrian 
• # mics: 6 (CHiME3);  1, 2, 6 (CHiME4)  
• Simulated and real recordings 

– Speech 
• Read speech (WSJ (5k)) 

 
http://spandh.dcs.shef.ac.uk/chime_challenge 

(Barker’15) 
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REVERB 

• Reverberant speech recognition 
– Recording conditions 

• Reverberation (RT 0.2 to 0.7 s.) 
• Noise type: stationary noise (SNR  ~20dB) 
• # mics: 1, 2,  8 
• Simulated and real recordings (MC-WSJ-AV) 

– Speech 
• Read speech (WSJ CAM0 (5k)) 

 
http://reverb2014.dereverberation.com 

(Kinoshita’13, Lincoln’05) 
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AMI 

• Meeting recognition corpus 
– Recording conditions 

• Multi-speaker conversations 
• Reverberant rooms 
• # mics: 8 
• Real recordings 

– Speech 
• Spontaneous meetings (8k) 

 
 

http://corpus.amiproject.org/ 

(Carletta’05) 
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AURORA 

• Aurora 4   
– Recording conditions 

• Noise types: car, babble, street, airport, train, restaurant 
• SNR: 5-15 dB 
• Channel distortion 
• # mics: 1 
• Simulation 

– Speech 
• Read speech (WSJ (5k)) 

 
http://aurora.hsnr.de/index-2.html 

 
 

(Parihar’02) 
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ASpIRE 

• Large vocabulary reverberant speech 
– Recording conditions 

• Reverberant speech 
• 7 different rooms (classrooms and office rooms) with various shapes, sizes, 

surface properties, and noise sources 
• # mics: 1 or 6 

– Speech 
• Training data: Fisher corpus (2000 h of telephone speech) 

 
https://www.iarpa.gov/index.php/working-with-iarpa/prize-challenges/306-automatic-speech-in-
reverberant-environments-aspire-challenge 

(Harper’15) 
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DIRHA 

• Multi-microphone and        
multi-language database  
– Acoustic conditions 

• Noise/reverberation recorded in 
an apartment 

• # mics: 40 
• Simulation 

– Speech 
• Multi-language (4 languages) 
• Various styles, command, 

keyword, spontaneous, …  

 
http://dirha.fbk.eu/simcorpora 

(Matassoni’14) 
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Summary of tasks 
Vocab 
size 

Amount of 
training data 

Real/
Simu 

Type of distortions # 
mics 

Mic-speaker 
distance 

Ground 
truth 

ASpIRE 100K ~ 2000 h Real Reverberation  8/1 N/A N/A 

AMI 11 75 h Real Multi-speaker conversations 
Reverberation and noise 

8 N/A Headset 

Aurora4 5K 7,138 utt. (~ 14 h) Simu Additive noise + channel distortion 
(SNR 5-15dB) 

1 N/A Clean 

CHiME1 50 17,000 utt. Simu Non-stationary noise recorded in a 
living room (SNR -6dB – 9dB) 
Reverberation from recorded impulse 
responses 

2 2m Clean 

CHiME2 
(WSJ) 

5K 7138 utt. (~ 15 h) Simu Same as CHiME1 2 2m Clean 

CHiME3 5K 8738 utt. (~ 18 h) Simu + 
Real 

Non-stationary noise in 4 
environments 

6 0.5m Close talk 
mic. 

CHiME4 5K 8738 utt. (~ 18 h) Simu + 
Real 

Non-stationary noise in 4 
environments 

6/2/1 0.5m Close talk 
mic. 

REVERB 5K 7861 utt.. (~ 15 h) Simu + 
Real 

Reverberation  in different living rooms 
(RT60 from 0.25 to 0.7 sec.) + 
stationary noise (SNR ~ 20dB) 

8/2/1 0.5 m – 2m Clean 
/Headset 
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2. Front-end techniques for 
distant ASR 
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SE Front-end 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Multi-channel 
dereverberation 

Multi-channel 
noise reduction 

Single-channel 
noise reduction 
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Speech enhancement (SE) 

• Reduce mismatch between observed speech and ASR back-
end due to noise/reverberation 

 
– Single-channel 

 
 
 

– Multi-channel 
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Type of processing 

• Linear processing 
– Linear filter constant for long segments 

 

 
• Non-linear processing 

– Linear filter changing for each time-frame 
 
 

– Non-linear transformation 

With 𝐹(∙) Non-linear function 
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Categorization of SE front-ends 

 
Single-channel Multi-channel 

Linear 
processing 

• WPE dereverberation (Nakatani’10) • Beamforming (Van Trees’02) 
• WPE dereverberation 

(Nakatani’10) 
• Neural network-based 

enhancement (Heymann’15) 

Non-linear 
processing 

• Spectral subtraction (Boll’79) 
• Wiener filter (Lim’79) 
• Time-frequency masking(Wang’06) 
• NMF (Virtanen’07) 
• Neural network-based enhancement 

(Xu’15, Narayanan’13, Weninger’15) 

• Time-frequency masking 
(Sawada’04) 

• NMF (Ozerov’10) 
• Neural network-based 

enhancement (Xiao’16)  
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Categorization of SE front-ends 
Single-channel Multi-channel 

Linear 
processing 

• WPE dereverberation (Nakatani’10) • Beamforming (Van Trees’02) 
• WPE dereverberation 

(Nakatani’10) 
• Neural network-based 

enhancement (Heymann’15) 

Non-linear 
processing 

• Spectral subtraction (Boll’79) 
• Wiener filter (Lim’79) 
• Time-frequency masking(Wang’06) 
• NMF (Virtanen’07) 
• Neural network-based 

enhancement (Xu’15, Narayanan’13, 
Weninger’15) 

• Time-frequency masking 
(Sawada’04) 

• NMF (Ozerov’10) 
• Neural network-based 

enhancement (Xiao’16)  
 

Focus on 
• Linear processing 
• Neural network-based enhancement 

 

Have been shown to interconnect well with ASR back-end 
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2.1 Dereverberation 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Multi-channel 
dereverberation 

Multi-channel 
noise reduction 

Single-channel 
noise reduction 
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Room impulse response 

• Models the multi-path propagation of sound caused by 
reflections on walls and objects (Kuttruff’09) 
–  Length 200-1000 ms in typical living rooms 

Direct path 

time 

ℎ𝑗 𝑛  

Late  
reverberation  

(100 ms-1000ms) 

Early  
reflections  
(=30-50 ms) 
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Reverberant speech 

𝑌 𝑡, 𝑓 = 𝐻𝑗 𝑡, 𝑓 ∗ 𝑋 𝑡, 𝑓 + 𝑈 𝑡, 𝑓    
             = ∑ 𝐻 𝜏,𝑓 𝑋 𝑡 − 𝜏, 𝑓𝑑

𝜏=0 + ∑ 𝐻 𝜏,𝑓 𝑋 𝑡 − 𝜏, 𝑓𝑇
𝜏=𝑑+1 + 𝑈 𝑡, 𝑓  

𝑋(𝑡, 𝑓) 𝐻 𝑡, 𝑓  

𝑌 𝑡,𝑓  

∗ 

Direct  +    Early  
sound    reflections 

𝐷(𝑡, 𝑓) 

Late  
reverberation 

𝐿(𝑡,𝑓) 

Dereverberation aims at suppressing late reverberation 

(Yoshioka’12b) 

Neglect noise for the 
derivations 
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Dereverberation 

• Linear filtering 
– Weighted prediction error 

 

• Non-linear filtering 
– Spectral subtraction using a statistical model of late reverberation 

(Lebart’01, Tachioka’14) 
– Neural network-based dereverberation (Weninger’14) 
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Linear prediction (LP)  
• Reverberation: linear filter  
       Can predict reverberation from past observations using linear prediction       
           (under some conditions) 

Current signal 

Prediction 

・・・ ・・・ ・・・ ・・・ 

Past signals 
Predictable 

 𝐷 𝑡,𝑓  and 𝐿 𝑡,𝑓  are both reduced 

Dereverberation:  

  

𝑌 𝑡, 𝑓 = 𝐷 𝑡, 𝑓 + 𝐿 𝑡, 𝑓  

�𝐺∗ 𝜏, 𝑓 𝑌 𝑡 − 𝜏, 𝑓
𝜏=1

 

𝐷� 𝑡,𝑓 = 𝑌 𝑡, 𝑓 −�𝐺∗ 𝜏, 𝑓 𝑌 𝑡 − 𝜏, 𝑓
𝜏

 

(Haykin’96) 
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Problem of LP-based speech dereverberation 

• LP predicts both early reflections and late reverberation 
– Speech signal exhibits short-term correlation (30-50 ms) 
  LP suppresses also the short-time correlation of speech   

 
• LP assumes the target signal follows a stationary Gaussian 

distribution 
– Speech is  not stationary Gaussian 
  LP destroys the time structure of speech 

 
• Solutions:  

– Introduce a prediction delay (Kinoshita’07) 
– Introduce better modeling of speech signals  
     (Nakatani’10, Yoshioka’12, Jukic’14) 
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Only  reduce 𝐿 𝑡,𝑓     

・・・ ・・・ ・・・ ・・・ 

Delayed linear prediction (LP)  

Current signal 

Past signals 
Unpredictable 

Predictable 
Delayed LP can only predict 𝐿 𝑡,𝑓  from past signals 

Delay 𝑑 (=30-50 ms) 

Prediction 

𝑌 𝑡, 𝑓 = 𝐷 𝑡, 𝑓 + 𝐿 𝑡, 𝑓  

�𝐺∗ 𝜏, 𝑓 𝑌 𝑡 − 𝜏,𝑓
𝜏=𝑑

 

(Kinoshita’07) 
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Estimation of prediction coefficients 

𝐺� 𝜏, 𝑓 = argmin
𝐺 𝜏,𝑓

� 𝑌 𝑡,𝑓 −  �𝐺∗ 𝜏,𝑓 𝑌 𝑡 − 𝜏, 𝑓
𝜏=𝑑

2

𝑡
 

• ML estimation for stationary signal 

• For non-stationary signal with time-varying power 𝜙𝐷 𝑡,𝑓  

𝐺� 𝜏, 𝑓 = argmin
𝐺 𝜏,𝑓

�
𝑌 𝑡,𝑓 −  ∑ 𝐺∗ 𝜏, 𝑓 𝑌 𝑡 − 𝜏, 𝑓𝜏=𝑑

2

𝜙𝐷 𝑡,𝑓
𝑡

 

Weighted prediction error (WPE) 

Delayed LP: 𝐷� 𝑡,𝑓 = 𝑌 𝑡, 𝑓 −�𝐺∗ 𝜏, 𝑓 𝑌 𝑡 − 𝜏,𝑓
𝜏=𝑑

 

(Nakatani’10, Yoshioka’12) 
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Multi-channel extension 

• Exploit past signals from all microphones to predict current signal at a 
microphone 
 
 
 
 
 
 
 

 
 
 
 

• Prediction filter obtained as 𝐠�𝑓 = argmin
𝐠𝑓

∑
𝑌1 𝑡,𝑓 −𝐠𝑓

𝐻𝐲𝑡−𝑑,𝑓
2

𝜙𝐷 𝑡,𝑓𝑡  

• Can output multi-channel signals 

・・・ ・・・ ・・・ ・・・ 

・・・ ・・・ ・・・ ・・・ 

・・・ ・・・ 

𝐷� 𝑡, 𝑓 = 𝑌1 𝑡, 𝑓 −��𝐺𝑗∗ 𝜏, 𝑓 𝑌𝑗 𝑡 − 𝜏, 𝑓
𝜏=𝑑

𝐽

𝑗=1

 

             = Y1 𝑡,𝑓 − 𝐠𝑓𝐻𝐲𝑡−𝑑,𝑓 

𝑌1 𝑡,𝑓  
�𝐺𝑗∗ 𝜏,𝑓 𝑌𝑗 𝑡 − 𝜏, 𝑓
𝜏=𝑑
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Processing flow of WPE 

Dereverberation 

Power estimation Prediction filter 
estimation 
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Sound demo from REVERB challenge 
Headset 

Distant 
(RealData) 

Derev 
+ beamformer 

Derev 

(Delcroix’14)  

0 0.8 Time (sec.) 

Fr
eq

ue
nc

y 
(H

z)
 

8000 
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Results for REVERB and CHiME3 

Front-end REVERB 
(8 ch) 

CHiME3 
(6 ch) 

- 19.2 % 15.6 % 
WPE 12.9 % 14.7 % 
WPE + MVDR Beamformer 9.3 % 7.6 % 

Results for the REVERB task (Real Data, eval set) (Delcroix’15) 
- DNN-based acoustic model trained with augmented training data 
- Environment adaptation 
- Decoding with RNN-LM   

 
Results for the CHiME 3 task (Real Data, eval set)  (Yoshioka’15) 
- Deep CNN-based acoustic model trained with 6 channel training data 
- No speaker adaptation 
- Decoding with RNN-LM   
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Remarks 

• Precise speech dereverberation with linear processing  
– Can be shown to cause no distortion to the target speech 

  Particularly efficient as an ASR front-end 
• Can output multi-channel signals 
  Suited for beamformer pre-processing 
• Relatively robust to noise 
• Efficient implementation in STFT domain 
• A few seconds of observation are sufficient to estimate the 

prediction filters 
 

Matlab p-code available at: www.kecl.ntt.co.jp/icl/signal/wpe 
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Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Multi-channel 
dereverberation 

Multi-channel 
noise reduction 

Single-channel 
noise reduction 

2.2 Beamforming 
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Principle 

• Pickup signals in the direction of the target speaker 
• Attenuate signals in the direction of the noise sources 

Beam pattern – microphone array gain 
as a function of the direction of arrival 
of the signal 
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Microphone signal model 

• Consider room impulse responses only within the STFT 
analysis window 
– Late reverberation as diffusive noise and included into the noise term 

𝑌𝑗 𝑡, 𝑓     ≈�𝐻𝑗 𝑚, 𝑓 𝑋 𝑡 − 𝑚,𝑓
𝑚

+ 𝑈𝑗 𝑡, 𝑓  

= 𝐻𝑗 𝑓 𝑋 𝑡,𝑓
𝑂𝑗 𝑡,𝑓

+ 𝑈𝑗 𝑡, 𝑓  

• Using matrix notations 
 

 
 
 
 

 

 
 
 
 

 
 
 

𝑋(𝑡, 𝑓) 
𝐡𝑓 

𝐲𝑡,𝑓 =
𝑌1 𝑡, 𝑓

⋮
𝑌𝐽 𝑡, 𝑓

= 𝐡𝑓  𝑋 𝑡, 𝑓
≜𝐨𝑡,𝑓

+ 𝐮𝑡,𝑓 

𝐨𝑡,𝑓  Source image at microphones 

𝐡𝑓 = 𝐻1 𝑓 , … ,𝐻𝐽 𝑓
T

  Steering vector 

𝐮𝑡,𝑓 

source image at microphone 𝑗 
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Steering vector 

• Represents the propagation from the source to the microphones, including 
– Propagation delays (information about the source direction) 
– Early reflections (reverberation within the analysis window) 

 

• Example of plane wave assumption with free field condition  
      (no reverberation and speaker far enough from the microphones) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Steering vector given as : 

𝐡𝑓 =
𝑒−2𝜋𝜋Δ𝜏1

⋮
𝑒−2𝜋𝜋Δ𝜏𝐽

 

Δ𝜏𝑗 
𝑌𝑗 𝑡, 𝑓 = 𝑋 𝑡,𝑓 𝑒−2𝜋𝜋Δ𝜏𝑗 + 𝑈𝑗 𝑡, 𝑓  

Reference microphone 

Δ𝜏𝑗       time difference of arrival (TDOA) 
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Beamformer 

• Output of beamformer 

𝑋� 𝑡, 𝑓 = �𝑊𝑗
∗ 𝑓 𝑌𝑗(𝑡, 𝑓)

𝑗

 

• Matrix notations 
𝑋� 𝑡, 𝑓 = 𝐰𝑓𝐻𝐲𝑡,𝑓 

 

𝐰𝑓 = 𝑊1 𝑓 , … ,𝑊𝐽 𝑓
𝑇             𝐲𝑡,𝑓 = 𝑌1 𝑡, 𝑓 , … ,𝑌𝐽 𝑡, 𝑓

𝑇
 

 
 

The filters 𝐰𝑓  are designed to remove noise 

𝑊1
∗(𝑓) 

𝑊2
∗(𝑓) 

𝑊𝑗∗(𝑓) 

𝑊𝐽
∗(𝑓) 

𝑌𝑗 𝑡, 𝑓  𝑋� 𝑡, 𝑓  + 
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Processing flow 

Filter computation 

Spatial information 
extraction 

– Delay and Sum (DS)  
– Minimum variance distortionless 

response (MVDR) 
– Max-SNR  
– Multi-channel Wiener filter (MCWF) 

– TDOAs 
– Steering vectors 
– Spatial correlation matrix 

𝑊1
∗(𝑓) 

𝑊2
∗(𝑓) 

𝑊𝑗∗(𝑓) 

𝑊𝐽
∗(𝑓) 

𝑌𝑗 𝑡, 𝑓  𝑋� 𝑡, 𝑓  + 
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2.2.1 Delay and Sum beamformer 
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Delay and sum (DS) beamformer 

• Align the microphone signals in time 
– Emphasize signals coming from the target direction 
– Destructive summation for signals coming from the other directions 

 
 
 
 
 
 
 
 

• Requires estimation of TDOAs Δ𝜏𝑗  

𝜏𝑗 

1 

𝑗 

Δ𝜏𝑗 

𝑒2𝜋𝜋Δ𝜏1
𝐽  

𝑒2𝜋𝜋Δ𝜏𝑖
𝐽  

+ 𝑌𝑗 𝑡, 𝑓  

𝑋� 𝑡, 𝑓  

(Van Veen’88) 
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TDOA estimation 

• Signal cross correlation peaks when signals are aligned in time 
Δ𝜏𝑖𝑖 = arg max

𝜏
𝜓𝑦𝑖𝑦𝑗(𝜏) 

𝜓𝑦𝑖𝑦𝑗 𝜏 = 𝐸 𝑦𝑖 𝑡 𝑦𝑗(𝑡 + 𝜏)  

 
 
 
 

 

• The cross correlation is sensitive to noise and reverberation 
– Usually use GCC-PHAT* coefficients that are more robust to 

reverberation 

𝜓𝑦𝑖𝑦𝑗
𝑃𝑃𝑃𝑃 𝜏 = 𝐼𝐼𝐼𝐼

𝑌𝑖 𝑓 𝑌𝑗∗ 𝑓
 𝑌𝑖 𝑓 𝑌𝑗∗ 𝑓

 

𝜏 

𝜓𝑦𝑖𝑦𝑗 

Δ𝜏𝑖𝑖 Δ𝜏𝑖𝑖 

*Generalized Cross Correlation with Phase Transform (GCC-PHAT) 

(Knapp’76, Brutti’08) 

𝜓𝑦𝑖𝑦𝑗 𝜏  
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BeamformIt – a robust implementation of  
a weighted DS beamformer* 

• BeamformIt: 
– Used in baseline systems for several tasks, AMI, CHiME 3/4 

 

Beamforming 

GCC-PHAT coeff. 
computation 

Filtering noisy 
TDOAs 

TDOA tracking with 
Viterbi decoding 

Reference channel 
selection 

Channel weight 
computation 

𝐰𝑓 =
𝛼1
𝐽 𝑒

2𝜋𝜋Δ𝜏1 , … ,
𝛼𝐽
𝐽 𝑒

2𝜋𝜋Δ𝜏𝐽
𝑇

 

Filter computation 

𝛼1, … ,𝛼𝐽 

Δ𝜏1, … ,Δ𝜏𝐽 

Single channel 
noise reduction 

(Anguera’07) 

Toolkit available : www.xavieranguera.com/beamformit 

* Also sometimes called filter-and-sum beamformer 
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2.2.2 MVDR beamformer 
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Minimum variance distortionless response 
(MVDR*) beamformer 

• Beamformer output: 
𝑋� 𝑡,𝑓 = 𝐰𝑓𝐻𝐲𝑡,𝑓 = 𝐰𝑓𝐻 𝐡𝑓𝑋(𝑡, 𝑓) + 𝐰𝑓𝐻𝐮𝑡,𝑓 

 
 
 
 

   ⇒ 𝑋� 𝑡,𝑓 = 𝑋 𝑡, 𝑓 + 𝐰𝑓𝐻𝐮𝑡,𝑓 
 

• Filter is obtained by solving the following: 
 
 
 

𝑋(𝑡, 𝑓) 
𝐡𝑓 

𝐲𝑡,𝑓 𝐮𝑡,𝑓 
Speech 𝑋(𝑡,𝑓) is unchanged 
(distortionless):  𝐰𝑓𝐻𝐡𝑓 = 1 

Minimize noise at the 
output of the beamformer 

* MVDR beamformer is a special case of the more general linearly constrained minimum variance      
   (LCMV) beamformer (Van Veen’88) 
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Expression of the MVDR filter 

• MVDR filter given by 

𝐰𝑓𝑀𝑀𝑀𝑀 =
𝐑𝑓𝑛𝑛𝑛𝑛𝑛

−1
𝐡𝑓

𝐡𝑓𝐻 𝐑𝑓𝑛𝑛𝑛𝑛𝑛
−1𝐡𝑓

 

 

– Where 𝐑𝑓𝑛𝑛𝑛𝑛𝑛  is the spatial correlation matrix* of the noise, which 
measures the correlation among noise signals at the different 
microphones 

𝐑𝑓𝑛𝑛𝑛𝑛𝑛 = �𝐮𝑡,𝑓𝐮𝑡,𝑓
𝐻

𝑡

=

1
𝑇
�𝑈1 𝑡, 𝑓 𝑈1∗ 𝑡, 𝑓
𝑇

𝑡

⋯
1
𝑇
�𝑈1 𝑡,𝑓 𝑈𝐽∗ 𝑡,𝑓
𝑇

𝑡
⋮ ⋱ ⋮

1
𝑇
�𝑈𝐽 𝑡,𝑓 𝑈1∗ 𝑡,𝑓
𝑇

𝑡

⋯
1
𝑇
�𝑈𝐽 𝑡, 𝑓 𝑈𝐽∗ 𝑡, 𝑓
𝑇

𝑡

  

 

 
* The spatial correlation matrix is also called cross spectral density 
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Steering vector estimation 
The steering vector 𝐡𝑓  can be obtained as the principal eigenvector of the spatial 
correlation matrix of the source image signals 𝐑𝑓

𝑠𝑠𝑠𝑠𝑠𝑠  

𝐡𝑓 =  𝒫 𝐑𝑓
𝑠𝑠𝑠𝑠𝑠𝑠  

 
 

 
 
 

 

Source image  
spatial correlation matrix 

𝑀(𝑡, 𝑓)𝑌𝑖(𝑡,𝑓) 

𝐑𝑓𝑛𝑛𝑛𝑛𝑛 =
∑ 𝑀(𝑡,𝑓)𝐲𝑡,𝑓𝐲𝑡,𝑓

𝐻
𝑡

∑ 𝑀(𝑡, 𝑓)𝑡
 

𝐑𝑓
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐑𝑓𝑜𝑏𝑏 − 𝐑𝑓𝑛𝑛𝑛𝑛𝑛 

𝑀(𝑡, 𝑓) = �1 if noise > speech
0 otherwise

 

Spectral masks 

𝐑𝑓𝑜𝑏𝑏 = �𝐲𝑡,𝑓𝐲𝑡,𝑓
𝐻

𝑡

 

Microphone signal (speech + noise) 

Noise estimate 

(Souden’13, Higuchi’16, 
Yoshioka’15, Heymann’15) 
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Spectral mask estimation 

• Clustering of spatial features for mask estimation 
– Source models 

• Watson mixture model (Souden’13)  
• Complex Gaussian mixture model (Higuchi’16) 

 
 
 
 
 
 
 

• Neural network-based approach (Hori'15, Heymann’15) 
– See slides 94-96 

E-step: update masks M-step: update spatial corr. matrix 

𝑀𝑡,𝑓 = 𝑝 𝑛𝑛𝑛𝑛𝑛 𝒚𝑡,𝑓,𝐑𝑓𝑛𝑛𝑛𝑛𝑛 ,𝐑𝑓
𝑠𝑠𝑠𝑠𝑠𝑠   𝑀𝑡,𝑓 

𝐑𝑓𝑛𝑛𝑛𝑛𝑛  

𝐑𝑓𝑛𝑛𝑛𝑛𝑛 =
∑ 𝑀(𝑡, 𝑓)𝐲𝑡,𝑓𝐲𝑡,𝑓

𝐻
𝑡

∑ 𝑀(𝑡, 𝑓)𝑡
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Processing flow of MVDR beamformer 

Beamforming 

Filter estimation 

Steering vector 
estimation 

Spatial correlation 
matrix estimation 

Time-frequency 
mask estimation 

𝑀(𝑡, 𝑓) = �1 if 𝐮𝑡,𝑓 > |𝐨𝑡,𝑓|
0 otherwise

 

𝑋� 𝑡, 𝑓 = 𝐰𝑓𝐻𝐲𝑡,𝑓 

𝐡𝑓 =  𝓟 𝐑𝑓
𝑠𝑠𝑠𝑠𝑠𝑠  

𝐑𝑓
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐑𝑓𝑜𝑜𝑜 − 𝐑𝑓𝑛𝑛𝑛𝑛𝑛 

𝐰𝑓𝑀𝑀𝑀𝑀 =
𝐑𝑓𝑛𝑛𝑛𝑛𝑛

−1
𝐡𝑓

𝐡𝑓𝐻 𝐑𝑓𝑛𝑛𝑛𝑛𝑛
−1𝐡𝑓

 

𝐑𝑓𝑛𝑛𝑛𝑛𝑛 
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Other beamformers 

• Max-SNR beamformer* (VanVeen’88, Araki’07, Waritz’07) 
– Optimize the output SNR without the distortionless constraint 

𝐰𝑓𝑚𝑚𝑚𝑚𝑚𝑚 =  𝓟 𝐑𝑓𝑛𝑛𝑛𝑛𝑛
−1
𝐑𝑓𝑜𝑜𝑜  

 

• Multi-channel Wiener filter (MCWF) (Doclo’02) 
– Preserves spatial information at the output (multi-channel output) 

𝐰𝑓𝑀𝑀𝑀𝑀 = 𝐑𝑓𝑜𝑏𝑏
−1
𝐑𝑓
𝑠𝑠𝑠𝑠𝑠𝑠 

 

 Max-SNR beamformer and MCWF can also be derived from 
the spatial correlation matrices 

* Max-SNR beamformer is also called generalized eigenvalue beamformer 
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2.2.3 Experiments 
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CHiME 3 results 

Results for the CHiME 3 task (Real Data, eval set)  
- Deep CNN-based acoustic model trained with 6 channel training data 
- No speaker adaptation 
- Decoding with RNN-LM   

0
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Beamformit
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Sound demo 

Clean 

MVDR 

MASK 
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(SimuData) 
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remarks 

• Delay-and-sum beamformer 
 Simple approach 
 Relies on correct TDOA estimation 

• Errors in TDOA estimation may result in amplifying noise 
 Not optimal for noise reduction in general 

 
• Weighted DS beamformer (BeamformIt) 

 Includes weights to compensate for amplitude differences among the microphone signals 
 Uses a more robust TDOA estimation than simply GCC-PHAT 

• Still potentially affected by noise and reverberation  
 Not optimal for noise reduction 
 

• MVDR beamformer 
 Optimized for noise reduction while preserving speech (distortionless) 
– Extracting spatial information is a key for success 

• From TDOA  Poor performance with noise and reverberation 
• From signal statistics  More robust to noise and reverberation 

 More involving in terms of computations compared to DS beamformer 
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Remarks 

• Beamforming can greatly reduce WER even when using a 
strong ASR back-end 
– Beamforming outperforms TF masking for ASR 

• TF masking removes more noise 
• Linear filtering causes less distortion (especially with the distortionless 

constraint) 

  This leads to better ASR performance 

 
• Future directions 

– Online extension (source tracking) 
– Multiple speakers 
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2.3 Deep neural network based 
enhancement 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Multi-channel 
dereverberation 

Multi-channel 
noise reduction 

Single-channel 
noise reduction 
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Deep network based enhancement: 
Parallel data processing 

• Basic architecture: regression problem 
 Train a neural network to map noisy speech to clean speech 

 
 
 
 
 

• Many variations investigated in terms of 
– Objective functions 
– Architectures 
– Input/output 

Deep neural 
network 

Input: noisy speech 
𝐲𝑡 

Output: clean speech  
𝐱𝑡 
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2.3.1 Objective functions 
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Regression based DNN 

• Train a DNN to directly predict the clean spectrum from 
the noisy speech spectrum 

• Objective function: minimum mean square error 
(MMSE) between clean and enhanced signal, 

𝐽(𝜃) = � 𝐱𝑡 − 𝐡𝑡𝐿(𝜃) 2

𝑡

 

– 𝐱𝑡  clean speech feature (output) 
• Log power spectrum 

– 𝐲𝑡   noisy speech feature (input) 
• Log power spectrum + Context 

– 𝐡𝑡𝐿  network output  
• 𝐡𝑡𝐿 can be unbounded (i.e., 𝐡𝑡𝐿 ∈ [−∞, ∞], which is 

considered to be difficult 
• Normalize the output by [−1, 1] 
• Use tanh() as an activation function 

– 𝜃   network parameters 

• When trained with sufficient data, it can be used to 
enhance speech in unseen noisy conditions Input: noisy speech 

features 𝐲𝑡 

Output: clean speech 
feature 𝐱𝑡 

(Xu’15) 
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Mask-estimation based DNN (Cross entropy) 

• Train a DNN to predict the coefficient of an ideal 
ratio mask (IRM)  

𝑚𝑡,𝑓 =
𝑥𝑡,𝑓

𝑥𝑡,𝑓 + 𝑢𝑡,𝑓
=

𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐 + 𝑛𝑛𝑛𝑛𝑛 

 
• Objective function:  cross entropy (CE) between 

estimated mask and IRM 
𝐽 𝜃 = −�𝑚𝑡,𝑓 log ℎ𝑡,𝑘

𝐿 (𝜃) − 1 −𝑚𝑡,𝑓 log 1 − ℎ𝑡,𝑘
𝐿 (𝜃)

𝑡,𝑓

 

– 𝐡𝑡𝐿 network output (continuous mask) 
• Bounded with 𝑚𝑡

𝐿 ∈ [0, 1], using a sigmoid function 
• Simplifies learning and tends to perform better than 

directly estimating clean speech 
 

• Enhanced signal obtained as 𝐱�𝑡 = 𝐦𝑡 ∘ 𝒚𝑡 
 

Input: noisy speech 
features 𝐲𝑡 

Output: time-frequency 
mask 𝐦𝑡 

(Narayanan’13, Wang’16) 
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Mask estimation based DNN (MMSE) 

• Train a DNN to predict the coefficient of a time-
frequency mask 𝐦𝑡 = 𝐡𝑡𝐿 
– Do not restrict the output to the IRM 

 

• Objective function: minimum mean square 
error (MMSE) between clean and enhanced 
signal, 

𝐽(𝜃) = � 𝐱𝑡 −𝐦𝑡(𝜃) ∘ 𝐲𝑡 2

𝑡

 

– 𝐱𝑡   clean speech feature (output) 
• Magnitude spectrum 

– 𝐲𝑡   noisy speech feature (input) 
• Log mel filterbank spectrum (as input to the network) 
• Magnitude spectrum to compute the enhanced signal 

– 𝐦𝑡  network output (continuous mask) 
• Bounded with 𝑚𝑡

𝐿 ∈ [0, 1] using a sigmoid function 

Output: clean speech feature 𝐱𝑡 

Mask 𝐦𝑡 

Input: noisy speech 
features 𝐲𝑡 

× 

(Weninger ’15) 
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Experiments on CHiME 2 

Front-end WER 
- 16.2 % 
Mask-estimation with cross entropy 14.8 % 

Results from (Wang’16) 

Enhancement DNN 
- Predict mask (CE Objective function) 
- Features: Log power spectrum 
Acoustic model DNN 
- Log Mel Filterbanks 
- Trained on noisy speech 

Can be jointly trained with the ASR back-end 
 More details in 3.4 Integration of front-end and back-end with deep networks 
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2.3.2 Recurrent architectures 
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Exploiting recurrent networks 

• Neural network based enhancement  
– Exploits only the context seen within its input features 
– Noise reduction could benefit from exploiting longer context 
 
 Some investigations for RNN-based approaches (Weninger’14, 
Weninger’15, Erdogan’15, Heymann’15) 
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LSTM: Long Short-Term Memory RNN 
• Elman RNN 

 
 

– Vanishing gradient due to recurrent weights 𝐖𝑙  
 

• LSTM 
– Avoids recurrent weights in the Elman form by introducing gates  

     (𝐠𝑡
𝑓,𝑙, 𝐠𝑡

𝑖,𝑙, 𝐠𝑡
𝑜,𝑙) and cell states 𝐜𝑡𝑙  

𝐡𝑡𝑙−1 

𝐡𝑡𝑙  

𝐡𝑡−1𝑙  
 

 

 

 

 

Cell state: 

𝐜𝑡𝑙 = 𝐠𝑡
𝑓,𝑙 ∘ 𝐜𝑡−1𝑙 +𝐠𝑡

𝑖,𝑙 ∘ tanh 𝐖𝑐,𝑙 𝐡𝑡𝑙−1

𝐡𝑡−1𝑙 + 𝐛𝑓𝑐,𝑙  

𝐡𝑡𝑙 = 𝜎 𝐖𝑙 𝐡𝑡𝑙−1

𝐡𝑡−1𝑙 + 𝐛𝑙  

𝜎 𝜎 𝜎 tanh  tanh  

𝐡𝑡𝑙−1 

𝐡𝑡−1𝑙  

𝐜𝑡−1𝑙  𝐜𝑡𝑙  

𝐡𝑡𝑙  

× × 

+ × 

𝐠𝑡
𝑓,𝑙 𝐠𝑡

𝑖,𝑙 𝐠𝑡
𝑜,𝑙 

Forget, input and output gates: 

𝐠𝑡
𝑓,𝑙 = 𝜎 𝐖𝑓,𝑙

𝐡𝑡𝑙−1

𝐡𝑡−1𝑙

𝐜𝑡−1𝑙
+ 𝐛𝑓,𝑙 , 𝐠𝑡

𝑖,𝑙 = 𝜎 𝐖𝑖,𝑙
𝐡𝑡𝑙−1

𝐡𝑡−1𝑙

𝐜𝑡−1𝑙
+ 𝐛𝑖,𝑙 , 𝐠𝑡

𝑜,𝑙 = 𝜎 𝐖𝑜,𝑙
𝐡𝑡𝑙−1

𝐡𝑡−1𝑙

𝐜𝑡𝑙
+ 𝐛𝑜,𝑙  

𝐡𝑡𝑙 = 𝐠𝑡
𝑜,𝑙 ∘ tanh(𝐜𝑡𝑙) 
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Mask estimation based LSTM 

• Minimize Mean Square Error 

𝐽(𝜃) = � 𝐱𝑡 −𝐦𝑡 ∘ 𝐲𝑡 2

𝑡

 

• Replace DNN with LSTM-RNN 
to consider long-context 
information 

– known to be effective for 
speech modeling 

• Several extensions 
(Erdogan‘15) 

– Bidirectional LSTM 
– Phase sensitive objectives 
– Recognition boosted features 

Input: noisy speech features 

Output: clean speech feature 

 𝐱𝑡  𝐱𝑡−1 

𝐲𝑡 𝐲𝑡−1 
LSTM block 

× × Mask 𝐦𝑡 
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Effect of introducing LSTM 

Front-end  WER 

- 31.2 %  

DNN based enhancement 29.7 % 

LSTM based enhancement 26.1 %  

Experiments on CHiME 2 Dev set with DNN back-end 
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2.3.3 Multi-channel extensions 
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Multi-channel extensions 

• Estimate mask for noise 𝑀(𝑡,𝑓)  using neural network 
– Use the mask to compute the noise spatial correlation matrix that is used to 

derive the beamformer filters (see slide 74) 

𝐑𝑓𝑁𝑁𝑁𝑁𝑁 =
∑ 𝑀(𝑡, 𝑓)𝐲𝑡,𝑓𝐲𝑡,𝑓

𝐻
𝑡

∑ 𝑀(𝑡, 𝑓)𝑡
 

 

• Beamforming networks or multi-channel deep networks  
– Design a network to perform beamforming 
– Can be jointly trained with the acoustic model  
– More details in 3.4 Integration of front-end and back-end with deep networks 

HMM state 
posteriors 

Beamforming 
network 

Acoustic 
modeling 
network 
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DN-based mask estimation for beamforming 

Beamforming 

Filter estimation 

Steering vector 
estimation 

Spatial correlation 
matrix estimation 

Mask 
Combination 

𝑀(𝑡, 𝑓) 

𝑋� 𝑡, 𝑓 = 𝐰𝑓𝐻𝐲𝑡,𝑓 

𝐡𝑓 =  𝓟 𝐑𝑓
𝑠𝑠𝑠𝑠𝑠𝑠  

𝐑𝑓
𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐑𝑓𝑜𝑜𝑜 − 𝐑𝑓𝑛𝑛𝑛𝑛𝑛 

𝐰𝑓𝑀𝑀𝑀𝑀 =
𝐑𝑓𝑛𝑛𝑛𝑛𝑛

−1
𝐡𝑓

𝐡𝑓𝐻 𝐑𝑓𝑛𝑛𝑛𝑛𝑛
−1𝐡𝑓

 
Mask 
estim. 
Net* 

Mask 
estim. 
Net* 

Mask 
estim. 
Net* 

Mask 
estim. 
Net* 

(Heymann’15, Hori’15, Heymann’16) 

* Masks derived from 1ch signals  does not exploit spatial information for mask estimation 

𝐑𝑓𝑛𝑛𝑛𝑛𝑛 

http://github.com/fgnt/nn-gev 
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CHiME 3 investigations 

Front-end WER 
- 40.2 % 
BeamformIt 22.7 % 
DNN mask estimation + MaxSNR BF 17.7 % 
BLSTM mask estimation + MaxSNR BF 15.4 % 

Avg. results for Real eval sets 
ASR back-end 
- DNN-based AM 
- Retrained on enhanced speech 
 

(Heymann’16) 
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Remarks 

• Exploit deep-learning for speech enhancement 
 Possible to train complex non-linear function for regression 
 Exploits long context, extra input features… 
 Online mask estimation/enhancement 
 Offers the possibility for jointly train the front-end and back-end 

 
• Requirements 

– Relatively large amount of training data 
– Noisy/Clean parallel corpus 

• This requirement can be potentially released if SE front-end and acoustic 
models are jointly trained or when predicting masks (Heymann’16) 
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3. Back-end techniques for 
distant ASR 
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3.1 Feature extraction 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 
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Feature extraction 

• Log mel filterbank 
 

 
– Spectrum analysis 
– Power extraction (disregard phase) 
– Emphasize low-frequency power with perceptual knowledge (Mel scale) 
– Dynamic range control  
– Cepstrum Mean and Variance Normalization (CMVN)   
  

• ETSI Advanced front-end (ETSI707) 
 
 
 
 
 
 

– Developed at the Aurora project 
– Time domain Wiener-filtering (WF) based noise reduction 

 
 

STFT  ∙ 2 log( ∙ )  Mel filtering 𝑦[𝑛] 𝐨𝑡  

STFT 
PSD 

estimation 
Mel 

filtering 
Wiener Filter 

Design 𝑦[𝑛] 

VAD 

Mel 
IDCT 

𝑦� [𝑛] 

Apply 
filter 

CMVN 𝐨𝑡  
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Gammatone Filtering based features 

• Human auditory system motivated filter 
• Power-Normalized Cepstral Coefficients (PNCC) (Kim’12) 

 
 

• Replace log ∙  to power  ∙ 0.1, frequency-domain Gammatone filtering, Medium-duration 
Power bias subtraction 

• Time-domain Gammatone filtering (e.g., Schulter’09, Mitra’14) 
– Can combine amplitude modulation based features 
– Gammatone filtering and amplitude modulation based features (Damped Oscillator 

Coefficients (DOC), Modulation of Medium Duration Speech Amplitudes (MMeDuSA)) 
showed significant improvement for CHiME3 task 

MFCC DOC MMeDuSA 

CHiME 3 Real Eval 
(MVDR enhanced signal) 

8.83 5.91 6.62 (Hori’15) 

STFT  ∙ 2 Power bias 
subtraction 

Gammatone 
filter (freq.)  ∙ 0.1 
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(Linear) Feature transformation 

• Linear Discriminant Analysis (LDA) 
– Concatenate contiguous features, i.e.,  𝐱t =  𝐨𝑡−𝐿𝑇 , … ,𝐨𝑡 ,𝑇  … ,𝐨𝑡+𝐿𝑇 𝑇  
– 𝐨�𝑡LDA = 𝐀LDA𝐱𝑡  
– Estimate a transformation to reduce the dimension with discriminant 

analysis 
 → Capture long-term dependency 

• Semi-Tied Covariance (STC)/Maximum Likelihood Linear 
Transformation (MLLT)  
– 𝑁(𝐨𝑡|𝛍𝑘𝑘 ,𝚺𝑘𝑘

diag) → 𝑁 𝐨𝑡 𝛍𝑘𝑘 ,𝚺𝑘𝑘full  with the following relationship 
 

𝚺𝑘𝑘full = 𝐀STC𝚺𝑘𝑘
diag 𝐀STC 𝑇

 
 

– Estimate 𝐀STC by using maximum likelihood 
– During the recognition, we can evaluate the following likelihood function 

with diagonal covariance and feature transformation 
 

 𝑁 𝐨�𝑡STC 𝐀STC𝛍𝑘𝑘 ,𝚺𝑘𝑘
diag , where 𝐨�𝑡STC = 𝐀STC𝐨𝑡  
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(Linear) Feature transformation, Cont’d 

• Feature-space Maximum Likelihood Linear Regression (fMLLR) 
– Affine transformation: 𝐨�𝑡 = 𝐀fM𝐨𝑡 + 𝐛fM 
– Estimate transformation parameter𝐀fMand 𝐛fMwith maximum likelihood 

estimation 
 

𝑄 𝐀fM,𝐛 = ∑ 𝛾𝑡,𝑘,𝑙𝑘,𝑡,𝑙 (log 𝐀fM +  log𝑁(𝐀fM𝐨𝑡 + 𝐛fM|𝛍𝑘𝑘,𝚺k𝑙))  
 

• LDA, STC, fMLLR are cascadely combined, i.e., 
 

 𝐨�𝑡=𝐀fM(𝐀STC(𝐀LDA 𝐨𝑡−𝐿𝑇 , … ,𝐨𝑡,𝑇  … ,𝐨𝑡+𝐿𝑇 𝑇)) + 𝐛fM 
 

• Effect of feature transformation with distant ASR scenarios GMM 
 
 
 
 
– LDA, STC, and fMLLR are cascadely used, and yield significant improvement 
– All are based on GMM-HMM, but still applicable to DNN as feature extraction 
– MFCC is more appropriate than Filterbank feature, as MFCC matches GMM  

(Tachioka’13,’14) 

MFCC, Δ, ΔΔ LDA, STC, fMLLR 

CHiME-2 44.04 33.71 

REVERB 39.56 30.88 



107 

 
3.2 Robust acoustic models 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 
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DNN acoustic model 

• Non-linear transformation of (long) context 
features by concatenating contiguous frames 

→ Very powerful for noise robust ASR 
 
 
 
 

 
 
 
 

• Cross entropy criterion 𝐽ce(𝜃) 

𝐽ce(𝜃) = −��𝜏𝑡,𝑘 logℎ𝑡,𝑘
𝐿 (𝜃)

𝑘𝑡

 

• There are several other criteria 
･ ･ ･ ･ ･ ･ 

Input speech features 

a i u w N ・・・ 

･ ･ ･ ･ ･ ･ 
𝐨𝑡 = [𝐱𝑡−𝐿, … , 𝐱𝑡 , … , 𝐱𝑡+𝐿] 

Long context!  
(usually 11 frames) 
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• Sequence discriminative criterion 𝐽seq(𝜃) 

𝐽seq 𝜃 = ��𝐸 𝑊,𝑊𝑢 𝑝(𝑊|𝑂𝑢)
𝑊𝑢

 

• 𝐸(𝑊,𝑊𝑢) is a sequence error between 
reference 𝑊𝑢 and hypothesis 𝑊 

– State-level Minimum Bayes Risk (sMBR) 

･ ･ ･ ･ ･ ･ 
Input speech features 

GMM DNN CE DNN sMBR 

CHiME3 
baseline v2 23.06 17.89 15.88 

･ ･ ･ ･ ･ ･ 
𝐨𝑡 = [𝐱𝑡−𝐿, … , 𝐱𝑡 , … , 𝐱𝑡+𝐿] 

𝑊 = My name is …. (hypothesis) 

LVCSR decoder 

𝑊𝑢 = My name was ….  (reference) 

Sequence discriminative criterion 

Compute sequence level errors 
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Multi-task objectives 

• Use both MMSE and CE criteria 
– 𝑋 as clean speech target 
– 𝑇 as transcription 
 

 
 
– Network tries to solve both 

enhancement and recognition 
– 𝜌 controls the balance between 

the two criteria 

 
 

･ ･ ･ ･ ･ ･ 

a N ・・・ 

ℎ𝑡,𝑘
MSE,𝐿 

ℎ𝑡,𝑘
CE,𝐿 

CE Multi-task 
𝝆 = 𝟎.𝟗𝟗 

REVERB RealData 32.12 31.97 

(Giri’15) 
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Toward further long context 

Time Delayed Neural Network (TDNN) 
Convolutional Neural Network (CNN) 
Recurrent Neural Network (RNN) 

• Long Short-Term Memory (LSTM) 
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Time delayed neural network (TDNN) 

• Deal with “very” long context (e.g., 17 frames) 
 
 
 
 
 
 
 
 
 
 

• Difficult to train the first layer matrix due to vanishing gradient 

𝐱𝑡−8 𝐱𝑡 𝐱𝑡+8 … … 

𝐡𝑡5 

(Waibel’89, Peddinti’15) 
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Time delayed neural network (TDNN) 

 
 
 
 
 
 
 
 
 
 𝐱𝑡−8 𝐱𝑡 𝐱𝑡+8 … … 

𝐡𝑡5 

(Waibel’89, Peddinti’15) 

• Original TDNN 
– Consider short context (e.g., [-2, 2]), 

but expand context at each layer 
𝐡𝑡1 = 𝜎(𝐀𝟏 𝐱𝑡−2,𝐱𝑡−1,𝐱𝑡, 𝐱𝑡+1, 𝐱𝑡+2 + 𝐛1) 
𝐡𝑡2 = 𝜎 𝐀2 𝐡𝑡−21 ,𝐡𝑡−11 ,𝐡𝑡, 

1 𝐡𝑡+11 ,𝐡𝑡+21 + 𝐛2  
𝐡𝑡3 = ⋯ 

Very large computational cost 
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Time delayed neural network (TDNN) 

• Original TDNN 
– Consider short context (e.g., [-2, 2]), 

but expand context at each layer 
𝐡𝑡1 = 𝜎(𝐀𝟏 𝐱𝑡−2,𝐱𝑡−1,𝐱𝑡, 𝐱𝑡+1, 𝐱𝑡+2 + 𝐛1) 
𝐡𝑡2 = 𝜎 𝐀2 𝐡𝑡−21 ,𝐡𝑡−11 ,𝐡𝑡, 

1 𝐡𝑡+11 ,𝐡𝑡+21 + 𝐛2  
𝐡𝑡3 = ⋯ 

Very large computational cost 
• Subsampled TDNN (Peddinti’15) 

– Subsample frames in the context 
expansion 

𝐡𝑡2 = 𝜎(𝐀2 𝐡𝑡−21 ,𝐡𝑡+21 + 𝐛2) 
– Efficiently compute long context 

network 
 
 
 

 
 

DNN TDNN 

ASpIRE 33.1 30.8 

AMI 53.4 50.7 

(Waibel’89, Peddinti’15) 

𝐱𝑡−8 𝐱𝑡 𝐱𝑡+8 … … 

𝐡𝑡5 
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Convolutional Neural Network (CNN) 

• Represents the input as time-frequency feature map 𝑜𝑡,𝑝,𝑞 (we can also 
use multiple maps one for static, delta and delta-delta features), where 𝑝 
and 𝑞 are indexes along the time and frequency axes of the feature maps 

 
 
 
 
 
 
 
  
 
 
 

• Time-dimensional feature maps can capture long context information 
       REVERB: 23.5 (DNN) → 22.4 (CNN-DNN) (Yoshioka’15a) 

𝑎𝑡,𝑝,𝑞
(𝑚)  

Output map 
ℎ𝑡,𝑝,𝑞

(𝑚)  
Input map 

𝐨𝑡 
Filters 

𝑤𝑝,𝑞
𝑚 , 𝑏(𝑚)  

Pooling map 

𝑜𝑡,𝑝,𝑞  

𝑎𝑡,𝑝,𝑞
(𝑚) = 𝑤𝑝,𝑞

(𝑚) ∘ 𝑜𝑡,𝑝,𝑞 + 𝑏(𝑚) 
ℎ𝑡,𝑝,𝑞

(𝑚) = 𝜎 𝑎𝑡,𝑝,𝑞
(𝑚)  

ℎ�𝑡,𝑞
(𝑚) = max

𝑝
ℎ𝑡,𝑝,𝑞
𝑚  (max pooling) 

𝑞 

𝑝 
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RNN/LSTM acoustic model 

• RNN can alos capture the 
long-term distortion effect 
due to reverberation and 
noise 

• RNN/LSTM can be applied as 
an acoustic model for noise 
robust ASR (Weng’14, 
Weninger’14) 
 
 

Input: noisy speech features 

𝒐𝑡 𝒐𝑡−1 
RNN or LSTM 

Output HMM state 

a i u w N ・・・ a i u w N ・・・ 

DNN RNN 

Aurora4 13.33 12.74 

CHiME2 29.89 27.70 
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Practical issues 
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The importance of the alignments 

• DNN CE training needs frame-level label 𝜏𝑡,𝑘 obtained by Viterbi algorithm 

𝐽CE(𝜃) = −��𝜏𝑡,𝑘 logℎ𝑡,𝑘
𝐿

𝑘𝑡

 

• However, it is very difficult to obtain precise label 𝜏𝑡,𝑘 for noisy speech  
 
 
 

 
• How to deal with the issue? 

– Re-alignment after we obtain DNN several times 
– Sequence discriminative training can mitigate this issue (however, since we use 

CE as an initial model, it is difficult to recover this degradation) 
– Parallel clean data alignment  
      if available 

sil sil? 

Noisy alignment Clean alignment 

CHiME2 29.89 24.75 
(Weng’14) 
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Degradation due to enhanced features 

 
 
 
 
 
 

 
• Which features we should use for training acoustic models? 

– Noisy features: 𝐨𝑡
𝑛𝑛𝑛𝑛𝑛 = FE(𝑌) 

– Enhanced features: 𝐨𝑡𝑒𝑒𝑒 = FE(𝑋�) 

Feature 
extraction SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡𝑒𝑒𝑒 

Feature 
extraction 

𝑌𝑗(𝑡,𝑓) 𝐨𝑡
𝑛𝑛𝑛𝑛𝑛 

Training Testing WER (%) 

Noisy 𝐨𝑡
𝑛𝑛𝑛𝑛𝑛  Noisy 𝐨𝑡

𝑛𝑛𝑛𝑛𝑛  23.66 

Noisy 𝐨𝑡
𝑛𝑛𝑛𝑛𝑛 Enhanced 𝐨𝑡𝑒𝑒𝑒  14.86 

Enhanced 𝐨𝑡𝑒𝑒𝑒  Enhanced 𝐨𝑡𝑒𝑒𝑒  ???? 

CHiME 3  
Real Eval 
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Degradation due to enhanced features 

 
 
 
 
 
 

 
• Which features we should use for training acoustic models? 

– Noisy features: 𝐨𝑡
𝑛𝑛𝑛𝑛𝑛 = FE(𝑌) 

– Enhanced features: 𝐨𝑡𝑒𝑒𝑒 = FE(𝑋�) 
Training Testing WER (%) 

Noisy 𝐨𝑡
𝑛𝑛𝑛𝑛𝑛  Noisy 𝐨𝑡

𝑛𝑛𝑛𝑛𝑛  23.66 

Noisy 𝐨𝑡
𝑛𝑛𝑛𝑛𝑛 Enhanced 𝐨𝑡𝑒𝑒𝑒  14.86 

Enhanced 𝐨𝑡𝑒𝑒𝑒  Enhanced 𝐨𝑡𝑒𝑒𝑒  16.17 

Re-training with enhanced 
features degrades the ASR  
performance!! 
• Noisy data training are robust 

for distorted speech (?) 
CHiME 3  
Real Eval 

Feature 
extraction SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡𝑒𝑒𝑒 

Feature 
extraction 

𝑌𝑗(𝑡,𝑓) 𝐨𝑡
𝑛𝑛𝑛𝑛𝑛 
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Remarks 

• Noise robust feature and linear feature transformation are 
effective 
– Effective for both GMM and DNN acoustic modeling  

• Deep learning is effective for noise robust ASR 
– DNN with sequence discriminative training is still powerful 
– RNN, TDNN, and CNN can capture the long-term dependency of 

speech, and are more effective when dealing with reverberation and 
complex noise 

• We can basically use standard acoustic modeling techniques 
even for distant ASR scenarios 

• However, need special cares for 
– Alignments 
– Re-training with enhanced features 
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3.3 Acoustic model adaptation 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 
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Importance of acoustic model adaptation 

0 2 4 6 8 10

CHiME 3

REVERB

WER (%) 

W/O adaptation
W Adaptation

(Delcroix’15a) 

(Yoshioka’15b) 
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Acoustic model adaptation 

• DNN is very powerful so why do we need adaptation? 
 
 
 
 

 
 

 
 

 
– Unseen test condition due to limited amount of training data 
– Model trained on large amount of data may be good on average but not 

optimal for a specific condition 

Acoustic 
model 

Training data 
Various speakers & environments 

Testing data 
Specific speaker & environment 

Acoustic 
model 

Adapt 
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Supervised/Unsupervised adaptation 

• Supervised adaptation 
– We know what was spoken 
– There are transcriptions associated with adaptation data 

 

• Unsupervised adaptation 
– We do not know what was spoken 
– There are no transcriptions 
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Supervised/Unsupervised adaptation 

• Supervised adaptation 
– We know what was spoken 
– There are transcriptions associated with adaptation data 

 

• Unsupervised adaptation 
– We do not know what was spoken 
– There are no transcriptions 
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DNN adaptation techniques 

• Model adaptation 
– Retraining 
– Linear transformation of input or hidden layers (fDLR, LIN, LHN, LHUC) 
– Adaptive training (Cluster/Speaker adaptive training) 

 

•   Auxiliary features 
– Auxiliary features 

• Noise aware training 
• Speaker aware training 
• Context adaptive DNN 
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DNN adaptation techniques 

• Model adaptation 
– Retraining 
– Linear transformation of input or hidden layers (fDLR, LIN, LHN, LHUC) 
– Adaptive training (Cluster/Speaker adaptive training) 

 

•   Auxiliary features 
– Auxiliary features 

• Noise aware training 
• Speaker aware training 
• Context adaptive DNN 
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Unsupervised labels estimation 

• 1st pass 
– Decode adaptation data with an existing ASR system 
– Obtain estimated labels, 𝜏̂𝑡,𝑘 

 Adaptation  
speech data 

𝜏̂𝑡,𝑘 Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

𝑂 

… … 
Speech 

enhancement 

𝑦𝑗[𝑛] 
𝑥�[𝑛] 𝐨𝑡 
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Retraining 

• Retrain/adapt acoustic model 
parameters given the estimated 
labels with error backpropagation 
(Liao’13) 

• Prevent modifying too much the 
model 
– Small learning rate 
– Small number of epochs (early stopping) 
– Regularization (e.g. L2 prior norm 

(Liao’13), KL (Yu’13))  

• For large amount of adaptation data, 
retraining all or part of the DNN (e.g. 
lower layers) 

Output: ℎ𝑡,𝑘
𝐿  0.1  0.8 0.1 0 0 

a i u w N 

0 1 0 0 0 Label: 𝜏̂𝑡,𝑘 
HMM State 

・・・ 

･ ･ ･ ･ ･ ･ 
Input speech features 
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Linear input network (LIN) 

• Add a linear layer that transforms the input features 
• Learn the transform with error backpropagation 

 

(Neto’95) 

･ ･ ･ ･ ･ ･ 
Input speech features 

a i u w N ・・・ 

･ ･ ･ ･ ･ ･ 

a i u w N ・・・ 

𝐨�𝑡 = 𝐀 𝐨𝑡 + 𝐛 
(no activation) 
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Linear hidden network (LHN) 

• Insert a linear transformation layer inside the network 
 

𝐡̂𝑡𝑙 = 𝐀 𝐡𝑡𝑙 + 𝐛 
(no activation) 

(Gemello’06) 

･ ･ ･ ･ ･ ･ 
Input speech features 

a i u w N ・・・ 

･ ･ ･ ･ ･ ･ 

a i u w N ・・・ 
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Learning hidden unit contribution  (LHUC) 

• Similar to LHN but with diagonal matrix 
  Fewer parameters 

 

･ ･ ･ ･ ･ ･ 
Input speech features 

a i u w N ・・・ 

･ ･ ･ ･ ･ ･ 

a i u w N ・・・ 

𝐡̂𝑡𝑙 = 𝐀 𝐡𝑡𝑙  

𝐀 =
𝑎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑎𝑁

 

(Swietojanski ’14b) 
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Speaker/Cluster adaptive training 

• Parameters of one or several layers are made dependent on conditions 
(speaker or noise) 
– During adaptation, adapt only the parameters of this layer (speaker adaptive 

training) (Ochiai’14) 
– Use the trained set of parameters as basis (𝐖𝑐

𝑙 , 𝑐 = 1, … ,𝐶) and only adapt 
weights of these basis 𝜆𝑐𝑙  (Cluster adaptive training) (Tan’15, Chunyang’15) 

･ ･ ･ ･ ･ ･ 
Input speech features 

𝐖𝑙 = �𝜆𝑐𝑙
𝐶

𝑐=1

𝐖𝑐
𝑙  

𝜆1𝑙  𝜆𝑐𝑙  𝜆𝐶𝑙  
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Room adaptation for REVERB (RealData) 

Speech processed with WPE (1ch) 
Amount of adaptation data ~9 min 
Back-end: 
- DNN with 7 hidden layers 
- Trigram LM 

Results from (Delcroix’15a) 

Adap WER (%) 
- 24.1 
1st 21.7 
All 22.1 
LIN 22.1 
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Model adaptation 

  Can adapt to conditions unseen during training 
 

  Computationally expensive + processing delay 
Requires 2 decoding step 

 
  Data demanding 

Relatively large amount of adaptation data needed 
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DNN adaptation techniques 

• Model adaptation 
– Retraining 
– Linear transformation of input or hidden layers (fDLR, LIN, LHN, LHUC) 
– Adaptive training (Cluster/Speaker adaptive training) 

 

•   Auxiliary features 
– Auxiliary features 

• Noise aware training 
• Speaker aware training 
• Context adaptive DNN 
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Auxiliary features based adaptation 

• Exploit auxiliary information about 
speaker or noise 

• Simple way:  
– Concatenate auxiliary features to input 

features 

• Weights for auxiliary features 
learned during training 
 
 

Auxiliary Features represents e.g., 
• Speaker aware (i-vector, Bottleneck feat.) (Saon’13) 

• Noise aware (noise estimate) (Seltzer’13) 

• Room aware (RT60, Distance, …) (Giri’15) 

･ ･ ･ ･ ･ ･ 
Input speech features 

a i u w N ・・・ 
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Context adaptive DNN 
• Similar to cluster adaptive training but the class weights 𝜆𝑐𝑙  are derived 

from an auxiliary network that input auxiliary features 
• The joint optimization of context classes, class weights and DNN 

parameters enables class weights and class definitions optimized for ASR 
 

･ ･ ･ ･ ･ ･ 
Input speech features 

・・・ 

Auxiliary Features 

× × × 

(Delcroix’15b, ’16a, ’16b) 

𝐖𝑙 = �𝜆𝑐𝑙
𝐶

𝑐=1

𝐖𝑐
𝑙  

(𝜆1𝑙 , …, 𝜆𝐶𝑙 ) 
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Speaker adaptation 

 
 
 
 
 
 

• Speaker i-vectors or bottleneck features have shown to 
improve performance for many tasks 

• Other features such as noise or room parameters have also 
been shown to improve performance 

Auxiliary feature AURORA 4 REVERB 

- 9.6 % 20.1 % 

i-vector 9.0 % 18.2 % 

Speaker ID Bottleneck 9.3 % 17.4 % 

Results from (Kundu’15) 
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Auxiliary features-based adaptation 

  Rapid adaptation  
Auxiliary features can be computed per utterance (~10 sec. or less) 
 

  Computationally friendly 
No need for the extra decoding step 
(Single pass unsupervised adaptation) 
 

  Does not extend to unseen conditions 
Requires training data covering all test cases 
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3.4 Integration of front-end and back-

end with deep networks 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 
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Front-end and back-end integration 

Feature 
extraction 

Acoustic 
model 

𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Represents SE front-end and 
acoustic model with neural 
networks 
 Optimize both SE front-end 

and Acoustic model using the 
same objective function 

 SE front-end becomes optimal 
for ASR 

a i u w N ・・・ 



144 

× 

Single channel integrated system 

• DNN-based SE front-end and 
ASR back-end can be 
connected to form a large 
network 

Can be optimized for ASR 
objective function (Cross 
entropy or SMBR) 

• Initialize each component 
independently 

Requires parallel corpus for 
     initialization 

Mask 𝐦𝑡 

Input: noisy speech features 𝐲𝑡 (log 
power spectrum) 

Enhanced power spectrum 

Enhanced  filterbank  
(Trainable) 

log, delta,  
mean normalization, 
Splicing 
(Not trained) 

M
as

k 
es

tim
at

io
n 

ne
t 

Fe
at

ur
e 

ex
tr

ac
tio

n 
ne

t 
Ac

ou
st

ic
 

m
od

el
 

(Wang’16) 
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Experiments on CHiME 2 

System CE sMBR 
Baseline (No SE front-end) 16.2 % 13.9 % 
Mask estimation using CE 14.8 % 13.4 % 
Mask estimation + retraining 15.5 % 13.9 % 
Joint training of mask 
estimation and acoustic model 14.0 % 12.1 % 

Large DNN-based acoustic model 15.2 %  - 

Results from (Wang’16) 

Enhancement DNN 
- Predict mask (CE Objective function) 
- Features: Log power spectrum 
Acoustic model DNN 
- Log Mel Filterbanks 
- Trained on noisy speech with cross entropy (CE) or sMBR objective function 
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Multi-channel approaches 
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Multi-channel approaches 

• Multi-channel input to the acoustic model 
 
 
 

• Beamforming network 
 
 
 
1. Directly enhance signal using CNN-based beamforming network 

(Filter learning) 
2. DNN outputs beamforming filters (Filter prediction) 

𝐨𝑡 =
𝐲𝑡,1
𝐲𝑡,2

 
𝐲𝑡,1 

𝐲𝑡,2 

HMM state 
posteriors 

Beamforming 
network 

Acoustic 
modeling 
network 

Acoustic 
modeling 
network 

HMM state 
posteriors 
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Multi-channel input acoustic model 

• Concatenate speech features (e.g. log mel filterbank) for each 
channel at the input of the acoustic model 
 
 
 
– With fully connected networks (Swietojanski’13 , Liu’14) 
– With CNNs (Swietojanski’14a) 

 
– Without phase difference: lack of special information 

 

(Marino’11, Swietojanski’13 , Liu’14, Swietojanski’14a) 

𝐨𝑡 =
𝐲𝑡,1
𝐲𝑡,2

 
𝐲𝑡,1 

𝐲𝑡,2 

Acoustic 
modeling 
network 
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CNN-based multi-channel input (feature domain) 

• Each channel considered as a different feature map input to a CNN 
acoustic model 
 

ℎ𝑡,𝑓 

𝐰𝑗 𝐲𝑡,𝑓,𝑗 

Process each channel with same filter 𝑤 
Max pooling across channels 
 Select the “most reliable” channel for each 

time-frequency bin 
 Applicable to different microphone 

configuration 
 

𝐰 
𝐲𝑡,𝑓,𝑗 𝐰 

𝐰 

max
𝑗

(ℎ𝑡,𝑓,𝑗) 

• Process each channel with different 
filters 𝑤𝑗 

• Sum across channels  
 Similar to beamforming but  
- Filter shared across time-frequency bins 
- Input does not include phase information 

ℎ𝑡,𝑓,𝑗 

Channel wise convolution 

ℎ𝑡,𝑓 = 𝜎 �𝑤𝑗 ∗  𝑦𝑡,𝑓,𝑗
𝑗

+ 𝑏  
ℎ𝑡,𝑓,𝑗 = 𝜎 𝑤 ∗ 𝑦𝑡,𝑓,𝑗 + 𝑏  

Conventional CNN 
Input maps Input maps 

(Swietojanski’14a) 
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Results for AMI corpus 

DNN CNN 
Single distant mic 53.1 % 51.3 % 
Multi-channel input (4ch)   51.2 % 50.4 % 
Multi-channel input (4ch) 
channel-wise convolution -  49.4 % 

BeamformIt (8ch) 49.5 % 46.8 % 

Back-end configuration: 
- 1 CNN layer followed by 5 fully connected layers 
- Input feature 40 log mel filterbank + delta + delta-delta 

- Inputting multi-channel improves over single-channel input 
- Beamforming seems to perform better possibly because it exploits phase 

difference across channels 

Results from (Swietojanski’14a) 
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Filter learning-based Beamforming network  
(time domain) 

• Beamforming can be expressed as a convolutional layer in the 
time domain (raw signals) 
 
 
 
 
 

• Joint optimization is possible 
– Time domain  Can exploit phase information 
– Fixed beamforming filter is learned from corpus 
– By having multiple output maps, we can obtain a set of fixed 

beamformers steering at different directions 

 
 

𝑤1[𝑛] 

𝑤𝑗[𝑛] 

𝑤𝐽[𝑛] 

𝑦𝑗 𝑛  𝑥�[𝑛] 
+ 

𝑎[𝑛] 

𝑤𝑗 𝑛  𝑦𝑗 𝑛  
a[𝑛] = �𝑤𝑗 𝑛 ∗ y𝑗[𝑛]

𝑗

 

Input maps 

(Hoshen’15, Sainath’16) 

𝑤𝑗 𝑛  → 𝑤𝑗
𝑚 [𝑛] 
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Filter learning-based Beamforming network  
architecture 

• Beamforming and acoustic modeling 
can be expressed as a single neural 
network 

 Joint training becomes possible 
 

• Beamforming network 
- Performs beamforming + implicit 

filterbank extraction 
- Max pooling in time and non-linearity 

removes phase information and 
mimic filterbank extraction 
 

Time 
convolution 

Max pooling in 
time 

Non-linearity 

CNN/LSTM-
based acoustic 

model 

Be
am

fo
rm

in
g 

ne
tw

or
k 
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Results on a large corpus 

CE sMBR 
Raw signal (1ch) 23.5 % 19.3 % 
Oracle delay and sum (8ch) 22.4 % 18.8 % 
Beamforming network (8ch) 20.6 % 17.2 % 
8ch log mel input 21.7 % -  

Google internal data 
2000 h of training data with simulated distant speech 

Results from (Sainath’16) 
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Filter prediction-based beamforming network 

• Design a neural network to predict the beamforming filter 
coefficients given the input microphone signals 

 Adaptive to the input signal 
– Time domain implementation (Li’16) 
– STFT domain implementation (Xiao’16) 

 

𝑌𝑗 𝑡, 𝑓  
+ 𝑋� 𝑡, 𝑓 = �𝑊𝑗 𝑓 𝑌𝑗(𝑡,𝑓)

𝑗

 

Beamforming filter 
predictor network 

𝑊1(𝑓) 

𝑊𝑗(𝑓) 

𝑊𝐽(𝑓) 

Complex domain 
neural network 
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Filter prediction-based beamforming network 

• Beamforming and acoustic 
modeling can be expressed as a 
single neural network 

 Joint training becomes possible 
• Mimic Log Mel Filterbank 
• Utterance-level mean pooling 

– Time-independent linear filter 𝑊𝑗(𝑓) 
 

• Need careful training procedure 
– Train network, which predict 

Beamforming filter independently  
• Requires simulated data to have 

ground truth of the beamformer 
filter 

– Train acoustic model DNN 
independently on 1ch data 

– Refine with joint-optimization 

Log mel feature 
extraction 

Acoustic model 
DNN 

GCC-PHAT STFT 

Beamforming filter 
predictor network 

× 

𝑊1 𝑓 , … ,𝑊𝐽 𝑓  

𝑌1 𝑡,𝑓 , … ,𝑌𝐽 𝑡, 𝑓  

(not trained) 

Utterance-level 
mean pooling 

(Xiao’16) 
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Results on the AMI corpus 

WER 
Single distant mic  (1ch) 53.8 % 
BeamformIt (8ch) 47.9 % 
Beamforming filter predictor 
network (8ch) 47.2 % 

+ Joint training (8ch) 44.7 % 

Back-end configuration: 
- Acoustic model (6 layer fully connected) 
- Training criterion: Cross entropy  

Results from (Xiao’16) 
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Remarks 

• Integration of SE front-end and ASR back-end becomes 
possible when all components are using neural networks 

• Joint optimization improves performance 
• For multi-channel, including phase information using raw 

signals or STFT domain features appears more promising 
– There may be issues for unseen condition or unseen microphone 

configurations 

• Filter learning or filter prediction 
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4. Building robust ASR systems 
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4.1 Overview of some successful systems 

at CHiME and REVERB 
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REVERB: NTT system 
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REVERB challenge system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Multi-channel 
dereverberation 

Multi-channel 
noise reduction 

Additional  
noise reduction 

WPE MVDR  
Noise spatial 

correlation matrix 
computed from the 
first and last frames 

DOLPHIN (Nakatani’13) 
Spectral and spatial 
model combination 
based enhancement 

(Delcroix’15)  
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REVERB challenge system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Features 
- 40 Log mel filter-bank coefficients + ∆ + ∆∆ (120)  
- 5 left+5 right context (11 frames) 
Acoustic model 
- DNN-HMM (7 hidden layers) 
- RBM pre-training 
- Training with data augmentation without SE front-end 

(Delcroix’15)  
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REVERB challenge system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Unsupervised environmental adaptation 
- Retrain 1st layer of DNN-HMM w/ small learning rate using 
- Labels obtained from a 1st recognition pass 

(Delcroix’15)  
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REVERB challenge system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Language model (LM) 
- Recurrent neural net (RNN) based LM w/ on-the-fly rescoring 

(Hori’14) 

(Delcroix’15)  
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REVERB: MERL/MELCO/TUM system 
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REVERB challenge system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Multi-channel 
noise reduction 

single-channel 
noise reduction/ 
dereverberation 

Delay and Sum 
Beamformer 

GCC to compute TDOA 

LSTM based dereverberation 
2 or 3-layer LSTM (128 units) 
Spectrum Subtraction based 

Dereverberation 
Late reverberation estimation based 
on the reverberation time estimation 

(Tachioka’14)  
(Weninger’14) 
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REVERB challenge system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Acoustic model (GMM) 
- 40 MFCC/PLP, LDA, MLLT, and fMLLR 
- Feature-space MMI, boosted MMI 
Acoustic model (LSTM) 
- LSTM output corresponds to 23 Log mel filter-bank 

coefficients 
- 3-layer LSTM (50 units) 
Multi-Stream integration 

(Tachioka’14)  
(Weninger’14) 
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REVERB challenge system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Language model (LM) 
- 3-gram LM 
Minimum Bayes Risk decoding 
System combination 

(Tachioka’14)  
(Weninger’14) 
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Results of top 2 systems 

Baseline 

MERL/MELCO/TUM 

NTT 

• Two systems significantly  
improve the performance 
from the baseline 
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CHiME 3: NTT system 
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CHiME3 challenge system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Multi-channel 
dereverberation 

Multi-channel 
noise reduction 

WPE MVDR (Higuchi’16) 
Spatial correlation matrix 

derived from time-frequency 
mask obtained by Clustering 

of spatial features 

(Yoshioka’15)  
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CHiME3 challenge system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Features 
- 40 Log mel filter-bank coefficients + ∆ + ∆∆ (120)  
- 5 left+5 right context (11 frames) 
Acoustic model 
- Deep CNN using Network-in-Network 
- Multi-channel training data (treat each channel training 

utterance as a separate training sample) 
- Training without SE front-end 

(Yoshioka’15)  



176 

CHiME3 challenge system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Unsupervised speaker adaptation 
- Retrain all layers of CNN-HMM 
- Labels obtained from a 1st recognition pass with DNN based 

system  cross adaptation (system combination) 

(Yoshioka’15)  
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CHiME3 challenge system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Language model (LM) 
- Recurrent neural net (RNN) based LM w/ on-the-fly rescoring 

(Hori’14) 

(Yoshioka’15)  
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CHiME 3: MERL-SRI system 
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CHiME3 challenge system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Multi-channel 
noise reduction 

BeamformIt (Anguera’07) 
LSTM Mask-based MVDR (Erdogan’16) 

 
Both methods are integrated at 

system combination 

(Hori’15)  



180 

CHiME3 challenge system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Features (3 type features. Integrated at system combination) 
1) 40 Log mel filter-bank coefficients 
2) Damped oscillator coefficients (DOC) (Mitra’14a) 
3) Modulation of medium duration speech amplitudes (MMeDuSA) (Mitra’14b) 
- 5 left+5 right context (11 frames) 
- LDA, MLLT, fMLLR feature transformation 
Acoustic model 
- DNN with sMBR training 
- Training with SE front-end 

(Hori’15)  
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CHiME3 challenge system 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Language model (LM) 
- Recurrent neural net (RNN) based LM 

(Hori’15)  
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CHiME3 challenge system 

System combination 
1) BeamformIt + Log mel filter-bank 
2) BeamformIt + DOC 
3) BeamformIt + MMeDuSA 
4) Make-based MVDR + Log mel filter-bank 

(Hori’15)  
System
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𝑊 𝑂 
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SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡, 𝑓) 𝐨𝑡 

Model 
adaptation 

Feature 
extraction Recognizer 
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model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡, 𝑓) 𝐨𝑡 

Model 
adaptation 

Feature 
extraction Recognizer 
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model 
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model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡, 𝑓) 𝐨𝑡 

Model 
adaptation 
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Results of top 4 systems 

0
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• Significant error reduction 
from the baseline (more than 
60%) 

→ Top system reaches clean 
speech performance (~5%) 
• All systems are very complex 
 (reproducibility) 
 

• We will discuss how to build 
such systems with existing 
tools 
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4.2 Overview of existing tools 
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SE front-end 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Tool Institute Function Language License 

WPE NTT Dereverberation Matlab Proprietary 

BeamformIt ICSI/X. Anguera Beamforming C++ Apache 2.0 

SRP-PHAT MVDR Inria Beamforming Matlab GPL 

FASST Inria Multi-channel 
NMF 

C++ GPL 

NN-based GEV beamformer U. Paderborn Beamforming Python Non-commercial 
Educational 
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Whole system: Kaldi recipes 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Recipe Enhancement Acoustic modeling Language modeling Main developers 

REVERB n/a GMM N-gram F. Weninger, S. Watanabe 

CHiME2 n/a DNN, sMBR N-gram C. Weng, S. Watanabe 

CHiME3 BeamformIt DNN, sMBR RNNLM S. Watanabe 

CHiME4 BeamformIt DNN, sMBR RNNLM S. Watanabe 

AMI BeamformIt DNN, sMBR, LSTM, TDNN N-gram P. Swietojanski, V. Peddinti 

ASpIRE n/a DNN, sMBR, LSTM, TDNN N-gram V. Peddinti 
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Whole system: Kaldi recipes 

Feature 
extraction Recognizer 

Acoustic 
model 

Language 
model Lexicon 

My name is … 

𝑊 𝑂 

… … 
SE front-end 

𝑌𝑗(𝑡,𝑓) 
𝑋�(𝑡,𝑓) 𝐨𝑡 

Model 
adaptation 

Recipe Enhancement Acoustic modeling Language modeling Main developers 

REVERB n/a GMM N-gram F. Weninger, S. Watanabe 

CHiME2 n/a DNN, sMBR N-gram C. Weng, S. Watanabe 

CHiME3 BeamformIt DNN, sMBR RNNLM S. Watanabe 

CHiME4 BeamformIt DNN, sMBR RNNLM S. Watanabe 

AMI BeamformIt DNN, sMBR, LSTM, TDNN N-gram P. Swietojanski, V. Peddinti 

ASpIRE n/a DNN, sMBR, LSTM, TDNN N-gram V. Peddinti 
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CHiME4 Kaldi recipe 
based on free software 

1. Get CHiME4 data 
http://spandh.dcs.shef.ac.uk/chime_challenge/software.html 
– Registration → LDC license confirmation step → credentials 

2. Get Kaldi 
https://github.com/kaldi-asr/kaldi 

3. Install Kaldi tools 
– In addition to default Kaldi tools, you have to install BeamformIt, IRSTLM, 

SRILM, and Milonov's RNNLM (all are prepared in kaldi/tools/extras 
– For SRILM, you need to get source (srilm.tgz) 

at http://www.speech.sri.com/projects/srilm/download.html 

4. Install Kaldi 
5. Specify CHiME4 data root paths in kaldi/egs/s5_6ch/run.sh 
6. Execute ./run.sh 

 
 

http://spandh.dcs.shef.ac.uk/chime_challenge/software.html
https://github.com/kaldi-asr/kaldi
http://www.speech.sri.com/projects/srilm/download.html
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kaldi/egs/s5_6ch/run.sh 

 
 
 
 
 
 
 

 
• run_init.sh: creates 3-gram LM, FSTs, and basic task files 
• run_beamform_6ch_track.sh: beamforming with 5 channel signals 
• run_gmm.sh: LDA, MLLT, fMLLR based GMM 
• run_dnn.sh: DNN + sMBR 
• run_lmrescore.sh: 5-gram and RNNLM rescoring 
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Result and remarks  

• Already obtain top level 
performance (11.5%) 

• Everyone can reproduce 
the same results! 
 

• Contribute to DSR recipes 
to improve/standardize DSR 
pipeline for the community, 
e.g. 
– Advanced beamforming by 

using public tools 
– Advanced acoustic 

modeling 
– Data simulation 
– DNN enhancement 
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6. Conclusion and future 
research directions 
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Conclusion 

• Combining SE and ASR techniques greatly improves performance in 
severe conditions 
– SE front-end technologies 

• Microphone array, 
• Neural network-based speech enhancement, … 

– ASR back-end technologies 
• Feature extraction/transformation 
• RNN/LSTM/TDNN/CNN based acoustic modeling 
• Model adaptation, … 

 
• Introduction of deep learning had a great impact on DSR 

– Large performance improvement 
– Reshuffling the importance of technologies 

 
• There remains many challenges and opportunities for further 

improvement 
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Toward joint optimization? 

• Joint training is a recent active research topic 
– Currently integrate front-end and acoustic model 
– Combined with end-to-end approaches it could introduce higher level cues 

to the SE front-end (linguistic info…) 

ASR  
back-end 

SE  
front-end 

ASR  
back-end 

SE  
front-end 

Separate optimization 
 
 
 
• Both components are designed 

with different objective functions 
  Potentially SE front-end can be 

made  more robust to unseen 
acoustic conditions (noise types, 
different mic configurations) 

  Not optimal for ASR 
 

Joint optimization 
 
 
 
• Both components are optimized 

with the same objective functions 
  Potentially more sensitive to 

mismatch between training and 
testing acoustic conditions 

  Optimal for ASR 
 



195 

Dealing with uncertainties 

• Advanced GMM-based systems exploited the uncertainty of 
the SE front-end during decoding (Uncertainty decoding) 
– Provided a way to interconnect speech enhancement front-end and 

ASR back-end optimized with different criteria 
 

• Exploiting uncertainty within DNN-based ASR systems has not 
been sufficiently explored yet 
– Joint training is one option 
– Are there other? 
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More severe constraints 

• Limited number of microphones 
– Best performances are obtained when exploiting multi-microphones  

 
 
 
 

– Remains a great gap between performance with a single-microphone 
 

 Developing more powerful single-channel approaches remains an 
important research topic 

 
• Many systems assume batch processing or utterance batch 

processing 
 Need further research for online & real-time processing 

 
Headset 
5.9 % 

 
Lapel 
8.3 % 

 
8ch 

9.0 % 

 
2ch 

12.7 % 

 
1ch 

17.4 % 
REVERB challenge 
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More diverse acoustic conditions 

• More challenging situations are waiting to be tackled 
– Dynamic conditions  

• Multiple speakers  
• Moving speakers, … 

– Various conditions  
• Variety of microphone types/numbers/configurations  
• Variety of acoustic conditions,  rooms,  noise types, SNRs, … 

– More realistic conditions 
• Spontaneous speech 
• Unsegmented data 
• Microphone failures, … 

– New directions 
• Distributed mic arrays, … 

 
 New technologies may be needed to tackle these issues 
 New corpora are needed to evaluate these technologies 
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Larger DSR corpora 

• Some industrial players have access to large amount of field data… 
      … most publicly available DSR corpora are relatively small scale 
• It has some advantages,  

 Lower barrier of entry to the field 
 Faster experimental turnaround 
 New applications start with limited amount of available data 

 
But… 
Are the developed technologies still relevant when training data cover 

a large variety of conditions? 
 

Could the absence of large corpora hinder the development of data 
demanding new technologies? 

 
 There is a need to create larger publicly available DSR corpus  
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DSR data simulation 

• Low cost way to obtain large amount of data covering many conditions 
• Only solution to obtain noisy/clean parallel corpora 

 

• Distant microphone signals can be simulated as 
 
 
 
 
  
– Good simulation requires measuring the room impulse responses and the 

noise signals in the same rooms with the same microphone array 
– Still …  

• Some aspect are not modeled e.g. head movements 
• It is difficult to measure room impulse response in public spaces,…  

∗ + = 
Microphone signal clean speech  measured room 

impulse response 
measured noise 
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DSR data simulation 

• Recent challenges results showed that 
– Simulated data help for acoustic model training 

• No need for precise simulation 
– Results on simulated data do not match results on real data when 

using an SE front-end 
• SE models match better to simulated data  Causes overfitting 

 

Need to develop better simulation techniques 
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Toolkits 

• ASR research has long history of community developed toolkits and 
recipes 

 
 

 
• Toolkits and recipes are important to 

– Lower barrier of entrance 
– Reproducibility of results 
– Speedup progress in the field 

 
• Recent DSR recipes for REVERB and CHiME challenges include state-

of-the-art back-end technologies 
• Much less toolkits and recipes available for SE technologies 

 
Community based development of SE toolkits could contribute to 

faster innovation for DSR 
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Cross community 

• DSR research requires combination of 
– SE front-end technologies 
– ASR back-end technologies 

 
Cross disciplinary area of research from speech enhancement, 

microphone array, ASR… 
 

Recent challenges (CHiME, REVERB) have contributed to 
increase synergy between the communities by sharing 
– Common tasks 
– Baseline systems 
– Share knowledge 

• Edit book to appear “New Era for Robust Speech Recognition: Exploiting 
Deep Learning,” Springer (2017) 
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Thank you! 
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